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Generally, the life of sexual organisms starts from a single
cell, the fertilized egg cell or zygote. By cell division and
growth this single cell finally gives rise to the mature
organism, which contains different cell types, tissues
and organs. The zygote, the progenitor cell is the ori-
gin for the formation of cells of different developmen-
tal fates and the main body axes.

In flowering plants (angiosperms) little is known
about the underlying mechanisms of these processes
and, in spite of its fundamental importance, regulation
of early embryonic development is only poorly under-
stood. New data suggest that the asymmetric division
of the zygote separates determinants of apical and
basal cell fates and that programmes of transcription
are initiated in the domains of single cells of the early
embryo. In this context, we describe results obtained by
the use of powerful tools of in vitro fertilization and
micromanipulation techniques for the elucidation of
mechanisms of early embryonic patterning in higher
plants.
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MANY of developmentally regulated mechanisms and events
appear during early embryogenesis. The embryo arises
from the fertilized egg, the zygote. The processes of tran-
sition from the maternal to the zygotic state and the sub-
sequent establishment of an embryo-specific developmental
path underlie dramatic changes in gene expression pro-
grammes. Therefore the timing of these changes and the
paternal and maternal contribution to this switch are of
fundamental interest. In animals, the timing of zygotic gene
activation varies considerably'. Generally, a delay be-
tween fertilization and the maternal to zygotic switch
occurs at the two-celled stage in mice, not earlier than the
three- to four-cell stage in Caenorhabditis elegans and
later at the mid-blastula stage in Xenopus and zebra fish
embryos, consisting of thousands of cells and early em-
bryonic development largely depend on maternal mRNA
and proteins®®. In fertilized mouse eggs, nascent tran-
scripts are not translated until the two-cell stage lead-
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ing to a delay of expression of zygotic genes by uncou-
pling translation from transcription”®.

Among angiosperms only fragmentary data are available
in Arabidopsis and maize. The early stages of embryo
and endosperm development in Arabidopsis have been
proposed to be largely under maternal control’. However,
there might be no general maternal control during early
embryogenesis, since the phenotypes of numerous em-
bryo lethal mutants of Arabidopsis segregate with a typical
sporophytic 3 : 1 ratio, suggesting no apparent maternal
effect'’”. In addition, some paternal alleles are expressed
early during development and are sufficient for normal
development in this species'"'?, and gfp-mRNA — from a
paternally inherited transgene — appeared as early as four
hours after in vitro fertilization to coincide with male
chromatin decondensation followed by translational activity
six hours after fertilization in the maize zygote'”. Expres-
sion analyses of 16 genes during early seed development
in maize revealed that only maternally inherited alleles
were detected during three days after fertilization'*. Also,
de novo zygotic genome activity has been shown in maize
by expression analyses of cyclin genes'>. Depending on
individual genes, considerable variations can occur re-
garding the contributions of paternal and maternal alleles
to early embryo and endosperm development and timing
of their expression. It is generally accepted that a wide
range of developmental events are epigenetically controlled.
A characteristic feature of such underlying processes is
that it is not associated with changes in DNA sequences
but is under the control of heritable changes in gene expres-
sion. Importantly, RNA molecules are involved in epige-
netic gene regulation by providing sequence specificity
for the targeting of developmentally relevant genes. This
RNA-based regulated gene expression can occur during
development at the transcriptional level by modifying
chromatin structure and/or DNA methylation and by in-
terfering with transcript stability or translation'®.

The underlying mechanisms of the specification of cells
originating from zygotes with different developmental
fates are widely unknown. However, different expression
profiles of specific cells suggest that they are established
during early embryonic development. For example, the
ATMLI1 gene (Arabidopsis thaliana meristem L1 layer),
which encodes a homeodomain protein, starts expression
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in the apical cell after zygotic division and is expressed in
all proembryo cells until the eight-cell stage. In the 16-
celled embryo, mRNA expression is restricted to the pro-
toderm. In the mature embryo, expression is restricted to
the L1 layer of the shoot apical meristem. It is assumed
that ATMLI is involved in the specification of cells and
pattern formation by setting up morphogenetic bounda-
ries of positional information'’.

Cell fate depends on positional signal molecules, and
among them, graded concentrations of auxin play an im-
portant role in pattern formation of the young embryo'>"
The apical-basal axis of Arabidopsis is established by ef-
flux-dependent auxin gradients’*'. Vesicle transport me-
diated by GNOM/EMB30 (GN) activity localizes putative
auxin transporters of the PINFORMED (PIN) family in a
polar fashion in the cell, suggesting a directional flow of
auxin® . Apical-basal pattern formation in the embryo
can be influenced by changes of PIN 1 location generated
by mutations occurring in the GN gene™®. A specific auxin
response is also of particular importance for pattern for-
mation of the young embryo. This is demonstrated by the
Arabidopsis BODENLOS (BDL) gene which encodes an
auxin response protein inhibiting MONOPTEROS (MP)-
mediated embryo patterning”’. Both are needed for normal
root development. The mutant monopteros lacking function
of ARFS3, a transcription factor of the ARF (auxin response
factor) family that activates auxin-responsive target
geneszs’”, and the auxin-insensitive mutant fail to initiate
the root meristem during early embryogenesis. The orien-
tation of the division plane of the apical daughter of the
zygote is influenced by bdl and mp mutations. The forma-
tion of the hypophysis is influenced by mutations in MP
and BDL genes in the manner that the putative hypophysis
fails to divide asymmetrically to form the precursors of
the quiescent center and the lower-tier stem cells of the
root meristem>”>",

The above-mentioned genes which are involved in
early embryogenesis have been identified through mutant
analyses using Arabidopsis, since the plant lends itself to
studies on embryogenesis in addition to being widely used
as a genetic model organism. The fixed pattern of embryo
formation in Arabidopsis makes it possible to trace the
origin of seedling structures back to the region in the
early embryo™ . Another reason why mutant analyses
have been employed for embryogenesis research is the
difficulty associated with directly addressing the female
gamete, zygote and early embryo in the embryo sac, deeply
embedded in the ovular tissues. In the late 1980s, technical
advances led to successful isolation of viable gametes™®. An
in vitro fertilization (IVF) system was developed
whereby maize zygotes produced in vitro by electrical fu-
sion of an isolated egg cell with an isolated sperm cell are
able to develop into an asymmetrical two-celled embryo,
proembryo and transition-phase embryo via zygotic em-
bryogenesis in a similar manner to that in planta® >°. A
major benefit of the in vitro gamete fusion and subsequent
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culture of zygotes is that the first unequal division of zy-
gotes can be observed directly, and the zygote and two-
celled embryo can be used as materials for further analy-
ses' ¥ Recently, a procedure for isolating the apical
and basal cells from two-celled maize embryos was es-
tablished, and these isolated cells were used as starting
points for detecting genes that are up- or down-regulated
in the apical or basal cell”’. In this review, single cell
manipulation and IVF techniques are outlined, genes ex-
pressed in apical and basal cells or zygotes of maize and
Arabidopsis are described, and finally prospects for fur-
ther investigations of early higher plant embryogenesis
are outlined.

Single cell manipulation to dissect cell
specification from a zygote

An experimental system has been established in maize to
isolate, handle, and fuse single gametes, which enables
studies of events that occur immediately after gamete fu-
sion. Starting with gamete fusion or isolated zygotes, the
development of a single zygote into a two-celled and
multicellular embryo and finally into a higher plant can
be followed in vitro. With experimental access to single
gametes, to gamete fusion, and to early events after in vitro
fertilization, the consequences and significance of such
events as cell specification on pattern and plant formation
can be studied at the single cell level’>**.

In vitro gamete fusions are performed without sur-
rounding cells of mother tissue or other cells of the embryo
sac. IVF includes the combination of three basic micro-
techniques: (i) the isolation and selection of male and fe-
male gametes, (ii) the fusion of pairs of gametes, and (iii)
single zygote culture.

The female gametes, zygotes and early embryos are lo-
cated in the embryo sac which is deeply embedded in the
ovule in most angiosperms. Therefore, for experimental
access and single cell manipulation, for example, gamete
fusions and cell analyses, these cells and small tissues have
to be isolated. To overcome the difficulties of direct ob-
servation and analysis of these cells, methods were devel-
oped for the isolation of embryo sacs, egg cells, central
cells and zygotes in a wide range of higher plant species
(for review see refs 35, 43). In maize, routinely 20-40
egg cells and zygotes can be isolated by one experienced
person per day; and under optimal conditions up to 60 of
these cells can be obtained*. This amount of cells is suf-
ficient, for example, for DNA-, mRNA-isolation, cDNA
library construction and PCR-based molecular analyses.
Despite the extremely small amount of plant material avail-
able, recent advances in proteomics technologies provide the
possibility of identifying proteins in such cells. Therefore,
biochemical analyses using maize egg cells were carried
out to determine abundant proteins in the egg cells*'.

Electrical pulse-mediated gamete fusion is the method
of choice for subsequent molecular analyses of cells to
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study early events exactly timed after fusion. This tech-
nique by far exceed the yield of zygotes gained by other
in vitro fusion methods and provides the required number
of zygotes which is necessary for further analyses'>***.
Sometimes there is no need to fuse gametes to obtain zy-
gotes. A sufficient number of zygotes (comparable to that
of isolated egg cells) can also be isolated. Monitoring the
development of individual zygotes is possible with this
system to study the early events of plant development**®,

As is the case of fertilized eggs in planta, maize zygotes
produced by IVF of an egg cell with a sperm cell and iso-
lated zygotes develop into an asymmetric two-celled embryo
that consists of a small plasma-rich apical cell tradition-
ally termed ca and a larger vacuolized basal cell (cb)
(Figure 1). The completion of the division of the in vitro-
produced maize zygotes occurs generally 42-46 h after
gamete fusion™ (Figure 2). Interestingly, the first division
of single maize and wheat zygotes, cultured without
mother tissue and without endosperm, is laid in the trans-
verse plane similar to that in planta. With access to fuse
gametes in vitro, it is possible to combine heterologous
gametes which naturally do not fuse in vivo, for example,
the fertilization of maize egg with wheat sperm. By using
this approach, the consequences of such hybridizations on
cell specification and pattern formation can be studied. It
was observed that the egg cell is the predominant cell in
heterologous egg—sperm fusions and determines the plane
of the first cell division when fusion combinations of
maize egg + maize sperm, maize egg + wheat sperm,
wheat egg + wheat sperm and wheat egg + maize sperm
were used (Figure 3). When a maize egg is fused with a
wheat sperm cell, the first division in the fusion product
is unequal as in in vitro zygotes of maize (Figure 3 @ and
b). Wheat in vitro zygotes do not show a pronounced
asymmetrical first cell division (Figure 3 d). This can
also clearly be observed after heterologous gamete fusion
of a wheat egg and a maize sperm cell in the fusion prod-
uct?’ (Figure 3 ¢).

Figure 1. Two-celled embryo of maize developed after in vitro gam-
ete fusion consisting of a small apical and a larger basal cell.
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A procedure was established for the isolation of apical
and basal cells from two-celled embryos derived from in
vitro fertilized egg cells*. The use of in vitro gamete fu-
sion and subsequent culture of zygotes was necessary to
obtain these cells, because so far their manual isolation
from ovules was not possible in maize. Thus, in vitro fer-
tilized egg cells were cultured, harvested shortly after the
division of the zygote and treated with a mixture of cell
wall degrading enzymes. After a 20 min treatment with
this mixture, a protoplast of the apical cell and a proto-
plast of the basal cell appear. The two protoplasts were
mechanically separated by using a thin glass needle under
an inverted microscope. This procedure resulted in single
apical (ca) and single basal (cb) protoplasts (Figure 4).

Genes that are up- or down-regulated in the
apical or basal cell

The establishment of a procedure for isolating apical and
basal cells made it possible to identify genes that are up-
or down-regulated in the apical or basal cell. Procedures
for detecting such genes are presented in Figure 5. cDNAs
were synthesized from 5 cell/embryo types: egg cells, apical
cells, basal cells, two-celled embryos and multicellular
embryos, and randomly amplified polymorphic DNA
(RAPD) PCR was conducted using these cDNAs as tem-
plates. Based on the patterns of the DNA-bands detected
in the gels, we categorized the expression patterns into six
groups as below.

Group 1: A DNA-band, which was detected in the api-
cal cell, two-celled embryo and multicellular embryo, but
not in the egg cell or basal cell (arrow 1 in Figure 5), is
assumed to be derived from a gene transcript that was up-
regulated only in the apical cell after fertilization.

Group 2: A DNA-band, which was detected in the basal
cell, two-celled embryo and multicellular embryo, but not
in the egg cell or apical cell (arrow 2 in Figure 5), is as-
sumed to be derived from a gene transcript that was up-
regulated only in the basal cell after fertilization.

Group 3: A DNA-band observed in the apical cell, basal
cell, two-celled embryo and multicellular embryo, but not
in the egg cell (arrow 3 in Figure 5) was assumed to be
derived from a gene transcript newly synthesized in both
the apical and basal cells after fertilization.

Group 4: A DNA-band observed in the egg cell, basal
cell, two-celled embryo and multicellular embryo, but not
in the apical cell (arrow 4 in Figure 5) was thought to be
derived from a gene transcript that was down-regulated
only in the apical cell after fertilization.

Group 5: A DNA-band present in the egg cell, apical
cell, two-celled embryo and multicellular embryo, but not
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Figure 2. Development of a polar in vitro produced maize zygote into a two-celled and a polar multicellular embryo during culture™.
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Figure 3 a-d. First cell division of in vitro zygotes and of fusion products after gametic homologous and heterologous in vitro
fusions. a, Distinct unequal cell division after fusion of maize egg and maize sperm. b, Distinct unequal cell division after fusion
of maize egg and wheat sperm. ¢, Equal cell division after fusion of wheat egg and maize sperm. d, Equal cell division after fusion

of wheat egg and wheat sperm*’.

in the basal cell (arrow 5 in Figure 5) was assumed to be
from a gene transcript that was down-regulated only in
the basal cell after fertilization.

Group 6: A DNA-band detected in all cell/embryo types
(arrow 6 in Figure 5) was judged to be amplitied from a gene
transcript that was constitutively expressed in all cell/embryo

types.

After sequence determination of the DNA-band and veri-
fication of expression pattern using specific primers,
BLAST search was conducted. The BLAST search results
are summarized in Table 1, which contains a list of the
cDNA clones (amplified DNA-bands) showing similarity
to genes whose functions have been investigated. Clone
72 had strong similarity to the farnesyltransferase (FTase)
B-subunit, which is involved in the prenylation of pro-
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teins. The Arabidopsis FTase B-subunit, encoded by the
ERAI-WIGGUM gene, is expressed in the embryo proper
throughout embryogenesis and is essential for meristem
development™* . An Arabidopsis ubiquitin-specific pro-
tease, similar to clone 1, is known to function in embryo
development™. Although the similarity was relatively
low, clone 97 was similar to the B subunit of CCAAT-
binding factor, which has been identified as a critical
regulator of embryogenesis in Arabidopsis® >, The phyto-
hormone auxin has been considered to be one of the key
molecules that controls cell division/fate during embryo-
genesis’>***, and an Arabidopsis ubiquitin-related pro-
tein, termed TIR1 protein, functions in the auxin response
via the COP9 signalosome™ . Clone 29, which showed
similarity to the ubiquitin-related protein, was suppressed
only in the apical cell after fertilization, suggesting
that the ability to respond to auxin may differ between
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Figure 4. Isolation of an apical and a basal cell from a two-celled maize embryo, developed after in vitro fertilization. a, Two-
celled embryo developed in in vitro culture. b, Two connected protoplasts derived from the two-celled embryo, which was treated
with cell wall degrading enzymes. ¢, Apical cell protoplast (right in focus, upper image) and basal cell protoplast (left in focus,

bottom image)**. Bars, 50 pum.
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Figure 5.

Procedures for detecting and isolating up- or down-regulated genes from isolated apical and basal cells from a two-celled maize em-

bryo. Two-celled and multicellular embryos were produced by in vitro fertilization of maize gametes and subsequent culture of the zygotes. The
apical and basal cells were isolated from the two-celled embryo, and cDNAs were prepared from the egg cell, apical cell, basal cell, two-celled em-
bryo and multicellular embryo. Using RAPD primers, PCR was conducted using each cDNA preparation as a template, followed by separation of
the amplified DNA by 1.2% agarose gel electrophoresis. The patterns of DNA bands detected in the gel were then compared among the 5
cell/embryo types. Based on the detection patterns of the DNA-bands showing the same mobility in the gel, the expression profiles were catego-

rized into 6 groups as described in text.

the apical and basal cells. The existence of putative em-
bryogenesis-related genes among the genes identified in
the present study provides the potential for identifying
embryogenesis-related genes that have not yet been char-
acterized.

As for Arabidopsis genes that are expressed in apical
cells, but not in basal cells, MP, BDL, WOX2 and AtMLI
are well known. PIN7, WOX8 and WOX9 are reported to
express in basal cells but not in apical cells. Extensive
investigations for Arabidopsis mutants whose apical-basal
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axis was disturbed or lost have been carried out by Jiir-
gens’s group. The results suggested that auxin is a key
molecule for the formation of embryonal axis and embry-
onic root meristem®*?"**_ In the basal cell of Arabidopsis
two-celled embryos, PIN7, encoding a putative auxin ef-
flux carrier protein, is expressed, and the PIN7 protein
localizes at the apical region of the cell. The specific
PIN7 expression and PIN7 localization in the basal cell
results in directional transport of auxin from basal to api-
cal cells, and the acropetal auxin transport increases the
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auxin level within apical cells®. PIN7 protein dependent
high auxin level in apical region cells continues until 8-
celled stage embryo. This auxin surge in apical cells is
thought to be a determinant of apical cell specification®.
In globular embryos, auxin transport becomes bispetal via
PIN1, 4 and 7 proteins from the apical part of the embryo
to the hypophysis, and thereafter, in the heart stage embryo,
auxin is accumulated at regions which form root meris-
tems, cotyledon primordia and provascular bundles*" %%,
Among these, formation of root meristems through auxin
dependent molecular mechanisms is best characterized.
ARF5/MP, a transcription factor that activates auxin-
responsive genes” IAAI2/BDL, a putative inhibitor of
MP?" are probably central to auxin response during embryo-
genesis. Loss of MP or gain of BDL function interferes
with specification of the apical cell, and prevents the
formation of an embryonic root>””'. MP and BDL are co-
expressed throughout embryogenesis and form heterodimers.
Auxin-dependent degradation of BDL results in the re-
lease of MP and MP-dependent expression of auxin re-
sponsive genes. Auxin facilitates degradation of Aux/IAA
proteins which are transcriptional regulators. Degradation
of these proteins and auxin-regulated transcription is me-
diated by an F-box protein, TIR1, that has been recently
shown to be an auxin receptor64’65. Besides TIR1, three
additional F-box proteins interact with BDL and mediate
auxin responses during plant development®™.

One of the putative targets of MP is WOX (WUSCHEL
RELATED HOMEOBOX) 9, since WOX9 expression is
altered in mp and bdl mutant embryos®’. A homeodomain
(HD)-containing transcription factor, WUSCHEL, is ex-
pressed throughout embryogenesis from early stages, and
is required for embryonic shoot meristem formation®®®.
Haecker er al.®’ demonstrated that WOX2 and 8 are ex-
pressed in the zygote, and that expression of WOX2 and
8 are restricted to apical and basal cells of the two-celled
embryos, respectively. WOX genes might have roles in
regulating specific functions of cells in which they are
expressed, because WUS is required for the establishment
of the shoot apical meristem. Gene expression in cells of
the basal lineage of tobacco and pea is directed by a pro-
moter element involved in asymmetric division' .

Genes that are up- or down-regulated in the zygote

cDNAs were synthesized from maize zygotes cultured for
0.5, 1, 3, 6, 12, 24 or 36 h after fertilization and used as
PCR templates to investigate when the expressions of the
12 up-regulated genes (groups 1-3 in Table 1) were initi-
ated in zygotes after in vitro fertilization. Notably, the
genes that are up-regulated after fertilization seemed to
be expressed in early stages of zygote development. Am-
plified DNA-bands derived from two gene transcripts
were detected in zygotes at 0.5 h after fertilization, and
four genes were expressed in zygotes at 1 h. All genes
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tested were expressed in zygotes during the first 12 h of
culture®, despite that the first unequal cell division of
zygotes produced by IVF occurs during 40-46 h of cul-
ture”. This suggests that fertilization induced gene ex-
pression in zygotes will start at early developmental
stages of zygotes. The specific DNA-band amplified with
the primer set for clone no. 1 was detected in zygotes at
3, 6 and 24 h after fertilization, but not at 12 or 36 h, in-
dicating that this gene may be up- and down-regulated
during zygote development in maize.

Expression of WOX2 and 8 are restricted to apical and
basal cells, respective1y67. However, it is still unclear
whether these two homeobox genes are already expressed
in egg cells, or are induced by fertilization.

Conclusion and direction of further lines of
research

In flowering plants the polarity of the zygote is generally
derived from the egg cell and is handed to the young em-
bryo by the laying down of a transverse wall asymmetri-
cally into a richly cytoplasmic smaller apical cell and a
larger vacuolated basal cell. The former gives rise to the
embryo proper and the latter to the progenitor of the sus-
pensor and hypophysis®>’'"®. The asymmetrical division
of the angiosperm zygote is widely assumed to be a con-
served process, although there are also symmetrical divi-
sions of these zygotes’.

It has been widely accepted that auxin appears to be
essential for apical cell specification. For the basal cell
specification, an Arabidopsis MAPKK kinase gene, named
YODA, was identified. YODA promotes extra-embryonic
cell fates in the basal cell lineage’’. The zygote does not
elongate properly in loss-of-function mutants, and the
cells of the basal lineage cells that are incorporated into
the embryo failed to differentiate the suspensor. In addi-
tion, gain-of-function alleles cause exaggerated growth of
the suspensor and suppressed development of the embryo
proper which was derived from the apical cell. The phe-
notype was similar to that of pin7 mutant, in which the
initial auxin flow from basal cell to apical cell is dis-
turbed®. These findings suggest that MAPKKK and
auxin signal pathways function in basal and apical cell
specification in the two-celled embryos, respectively.
These two independent mechanisms for cell specification
between apical and basal cells will support the view that
unequal cell division along zygote polarity is the first
step of axis formation in the embryo, and that zygotic po-
larity is crucially important for axis formation. Many ul-
trastructural studies have revealed that reorganization of
organelles in zygotes occurs after fertilization and during
zygote development (reviewed in Raghavan’), suggest-
ing that polarity of the zygote is not simply derived from
that of the egg cell. Since IVF is a most suitable method
for continuous observation of zygote development and
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Table 1. Expression patterns, sequence features and BLAST searches
BLASTN

Expressed cell/embryo Group no. Clone no. Similarity ScoreE-value Accession no. Plant
2,A,M 1 22 Polypyrimidine tract RNA-binding protein 248 3e-95 AF076924 A. thaliana
2,A,M 1 97 CCAAT-binding factor, B-subunit 68 2e-10 AY 087696 A. thaliana
2,B,M 2 1 Ubiquitin-specific protease 312 3e-84 AF302665 A. thaliana
2,B,M 2 26 tRNA methyltransferase 305 9¢-82 AY080697 A. thaliana
2, B, M 2 33 Receptor kinase 133 5e-30 AF285172 P. vulgaris
2,B,M 2 98 L-methionine S-methyltransferase 206 9e-53 AF144079 Z. mays
2,B,M 2 104 Mitotic checkpoint protein 279 5e-74 AB024032 A. thaliana
2,A,B,M 3 4 Putative outer envelope protein 291 1e-77 AC020666 O. sativa
2,A,B,M 3 43 DNA-binding protein 127 1e-28 X98744 P. sativum
2,A,B,M 3 65 GTPase-activating enzyme 182 6e-65 AC013483 A. thaliana
2,A,B,M 3 72 Farnesyltransferase, -subunit 221 6e-57 AP003218 0. sativa
2,A,B,M 3 83 Sterol glucosyl transferase 317 1e-85 AP003745 0. sativa
E,2,B,M 4 29 Ubiquitin-related protein 238 le-61 AY062568 A. thaliana
E,2,B,M 4 40 Zn finger protein 220 1e-56 AC120506 0. sativa
E,2,B,M 4 70 DNA-binding Zn finger protein 213 7e-60 AP005249 O. sativa
E,2,B,M 4 74 Phospholipase D 419 e-116 D73410 Z. mays
E,2,A,M 5 52 RNA-binding protein 155 2e-46 AC091811 0. sativa
E,2,A,B,M 6 86 Heat shock protein 353 6e-96 U55859 T. aestivum
E,2,A,B.M 6 87 Ribosomal protein 323 3e-87 U64436 Z. mays
E, egg cell; 2, two-celled embryo; A, apical cell; B, basal cell; M, multicellular embryo.

transition to a two-celled embryo, examination of zygotes
containing organelles which are labelled with fluorescent
proteins will give a clue to study underlying mechanisms
of polarity changes.

With proteins that regulate auxin response available to
us, in vitro systems become all the more valuable to study
subcellular localization of such proteins with immunocy-
tological methods (developed for single egg cells and zy-
gotes™) or by a transgenic approach using green fluorescent
proteins’.

A possible mechanism involved in the establishment of
zygotic polarity is subcellular localization of mRNAs in
zygotes. In unicellular organisms, animal and plant tis-
sues and developing embryos from a variety of animal
phyla, subcellular localization of RNA has emerged as a
key mechanism through which cells become polarized,
and the localization of RNA is known to be a widespread
and efficient way to target gene products to a specific re-
gion of a cell or embryo®**. Genes that are up-regulated
in the apical or basal cell after fertilization were revealed
to be expressed in the early zygote, providing the possi-
bility that transcripts from these genes are localized to the
putative apical or basal region of the zygote, or that the
transcripts might be degraded in one of the daughter cells
immediately after zygotic cell division***’. In addition to the
genes up-regulated in the zygote and two-celled embryos,
down-regulated genes in the apical or basal cell were also
identified (Table 1). This indicates that the transcripts from
these genes may exist uniformly in the egg cells and be-
come distributed to the apical and basal regions of the
zygote after fertilization, or that subcellular localization
of these transcripts may already be present in the egg cell.
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Alternatively, rapid degradation of the transcripts might
occur in one of the daughter cells after zygotic cell division.
Subcellular localization of mRNAs in the zygote may
represent a crucial mechanism for asymmetrical devel-
opment of the zygote and early embryogenesis in higher
plants. Visualizing the putative subcellular localization of
mRNAs by microinjection of fluorescence-labelled RNA
into zygotes or an in situ hybridization approach will
provide a cue for understanding the mechanisms of asym-
metrical division.
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