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Einstein initiated and stressed the role of geometry in
fundamental physics. Fifty years after his death the
links between geometry and physics have been signifi-
cantly extended with benefits to both sides.
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1. General relativity

EINSTEIN is generally recognized as the greatest physicist
of the 20th century and perhaps the greatest physicist
since Newton, though Faraday and Clerk Maxwell are
close competitors. Einstein is a case where popular acclaim
and scientific standing are in agreement. But unlike Newton,
Einstein was not a mathematician. He used mathematics
in an essential way but he did not create it and he relied
on his colleagues for technical help. It is all the more re-
markable that his ideas have triggered great advances in
geometry, even in parts of the subject apparently far re-
moved from physics.

I will attempt to describe and explain how this has come
about. But first I should make some general remarks
about the relation between physics and mathematics. The
conventional view is that mathematicians have developed
machinery for studying numbers (which might represent
physical quantities) and the way in which those relate to
each other in the form of equations. Physicists then use
this language and embody their conclusions in ‘laws’ de-
scribed by equations. Thus Newton’s gravitational theory
is described by the inverse square law of mutual attraction,
while the fundamental laws of electro-magnetism are en-
coded in Maxwell’s equations.

While this orthodox view is formally correct, it hides
some essential features. In physics the starting points are
the concepts: particles, forces, space, time, motion, interac-
tion. Objects are seen to move around and act on one another.
The secondary part of the story is the taking of measure-
ments by the experimental scientist. Numbers are written
down, tabulated, compared.

The earliest part of mathematics to be studied in depth
was geometry, in the hands of the Greeks. The basic concepts
here are: points, lines, angles, triangles, circles and their
mutual relation. Numbers, giving distances and areas come
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shortly thereafter, but equations did not enter the picture
until the work of Descartes in the 17th century.

The connection between physics and geometry starts at
the conceptual stage in a fully 3-dimensional picture of
the world, and has nothing to do with any reference frame
which one may choose in which to take measurements. It
is not easy to move from physics to geometry without
choosing (x, y, z) coordinates and writing equations, but it
is more fundamental. Descartes’ introduction of coordi-
nates may have been an essential step in the formalization
of mathematical physics but it was also an abdication: it
gave up on trying to understand physics geometrically.

Newton understood this, which is why he presented his
Principia in geometric form, but this was too difficult for
posterity who followed the ideas of Descartes and Leibniz.

This brief philosophical review is essential if we want
to understand how Einstein’s ideas came to influence geome-
try. As we all know, Einstein’s monumental contribution
was the replacement of the Newtonian theory of gravity
by what is called General Relativity. This theory has two
essential features, the first is to move from 3-dimensional
geometry to 4-dimensional geometry by incorporating
time as a fourth variable. This is the content of Special
Relativity, but the second key step is to interpret gravitation as
the curvature of this 4-dimensional space—time geometry.

Standard text-books make great play with the technical
details, introducing coordinates, writing equations and
then showing that the resulting physics is independent of
the choice of coordinates. To a geometer this is perverse.
The fundamental link is from physics to geometry, from
force to curvature and the algebraic machinery that encodes
this is secondary. God created the universe without writing
down equations!

2. Electro-magnetism

As far as gravity is concerned, Einstein’s General Relativity is
a beautiful and complete theory. But as Einstein realized
it has to be extended to account for other physical forces,
the most notable being electro-magnetism. It is perhaps
no accident that the first and most significant step in this
direction was taken by a mathematician — Hermann Weyl.
He showed that, by adding a fifth dimension, electro-
magnetism could also be interpreted as curvature. His
idea was that the size of a particle could alter as it passed
through an electro-magnetic field. In analogy with railways it
was called a gauge theory, and this name has stuck through
subsequent evolutions of the theory.
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Unfortunately for Weyl, Einstein immediately objected
on physical grounds that this would have meant different
atoms of, say hydrogen, would have different sizes de-
pending on their past history, in contradiction with obser-
vation. Given this devastating critique, it is remarkable
but fortunate that Weyl’s paper was still published, with
Einstein’s objection as an appendix. Clearly the beauty of
the idea attracted the editor, despite the fatal flaw. In fact,
beauty often wins such contests, because with the advent
of quantum mechanics, with its complex wave functions,
it was pointed out by Kaluza and Klein that Weyl’s gauge
theory could be salvaged if one interpreted the variable as
a phase rather than a length. A pure phase shift by itself
is not physically observable and so Weyl’s theory avoids
the Einstein objection.

Quantum mechanics

While quantum mechanics thus came to the rescue of Weyl’s
gauge theory and so continued the Einstein programme of
geometrizing physics, it also seemed to demolish the
whole idea. While quantum mechanics is a very subtle
and beautiful mathematical theory, it strays very far from
geometry and is conceptually difficult to comprehend. In
fact, as is well known, Einstein never fully accepted quantum
mechanics as the final word. He disliked its philosophical
basis with its need for probability and uncertainty.

While conceding its great practical success, Einstein
remained opposed to quantum mechanics to his dying day.
Increasingly he was regarded by the younger generation
of physicists as being obstinate and out of touch. His con-
tinued search for a unified field theory only confirmed
this widely held opinion.

3. Nuclear forces

Einstein and Weyl, who both went to the Institute for Ad-
vanced Study in Princeton as refugees from Germany in
the 1930’s, died in 1955, the year I myself went to Princeton
as a fresh Ph D. This was also the year when Yang—Mills
theory was born, the theory which developed in due
course into the standard framework for understanding the
‘weak’ and ‘strong’ forces which operate on the nuclear
scale and are believed, together with gravitation and electro-
magnetism, to provide all the fundamental forces of nature.
Yang-Mills theory can be roughly understood as the
natural extension of Maxwell’s theory in which the angular
phase is replaced by a phase specified by rotation in a
higher dimensional ‘internal space’. This internal space is
not part of our usual space—time but is additional to it,
just as the Maxwell phase was interpreted as a fifth di-
mension. There is one fundamental difference between
angles (rotation in a plane) and rotations in 3 or more dimen-
sions. Two such rotations, about different axes, do not in
general ‘commute’, that is to say that the result of per-
forming the two rotations one after the other depends on
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the order in which they are performed. This is easy to
verify by considering rotations of the earth. Consider for
example a rotation A about the North Pole/South Pole
axis of say 20° in a westward direction, and a rotation B
around the axis through Chennai (and its antipode), which
takes Bangkok to a position due North of Chennai (some-
where in Northern Kashmir). Performing first B and then
A will take Bangkok, via Kashmir, to northern Iran. On
the other hand, performing A first will take Bangkok appro-
ximately to Chennai, so that following this by B will leave
it there. The results obviously differ — Chennai is not in
Iran!

This non-commutativity of rotations has major conse-
quences for Yang—Mills theory, making it a much more
complicated and subtle theory than Maxwell theory. In
particular it becomes non-linear, which has profound
mathematical and physical consequences.

It is somewhat ironic that the ideas of Yang and Mills
developed quite independently of Weyl and Einstein and
that there was little interaction with them. No doubt the
generation gap was too large. In addition, Yang—Mills theory
was a quantum theory, still in its infancy, and the full
geometrical implications were not yet apparent.

With the belated recognition that all four of the funda-
mental forces of nature were geometrical, one might have
said that Einstein’s dream of a unified field theory was
finally realized, even if it came after Einstein’s death. In
fact, as has just been indicated, this was only partially
true because of the presence of quantum theory. On the one
hand the quantum aspects made the theory extremely dif-
ficult and sophisticated, taking further decades to unravel.
On the other hand, Einstein’s philosophical objections
would remain. He would still be dissatisfied from beyond
the grave. Nevertheless physicists now grudgingly ac-
knowledge that Einstein’s intuition was in part justified
and that the revolution he introduced in General Relativity of
geometrizing physics has proceeded much further. Per-
haps the verdict would be that the final outcome of the
long Einstein—Bohr arguments was a draw, with the big
proviso that “finality’ has not yet been achieved.

4. String theory

At this point in the development, although geometry provided
a common framework for all the forces, there was still no
way to complete the unification by combining quantum
theory and general relativity. Since quantum theory deals
with the very small and general relativity with the very
large, many physicists feel that, for all practical purposes,
there is no need to attempt such an ultimate unification.
Others however disagree, arguing that physicists should
never give up on this ultimate search, and for these the
hunt for this final unification is the ‘holy grail’.

In the past thirty years a promising framework has appea-
red in which such a unification seems conceptually possi-
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ble. This is ‘string theory’, based on the simple idea that point
particles should be replaced by one-dimensional objects —
strings, either open (with free ends) or closed (in circular
form).

String theory, which is as yet unfinished and incomplete,
involves yet more geometry beyond Yang-Mills. In the
first place a string moving in time spans a surface which
has its own geometry. For example the surface may acquire
holes, a topological feature with profound implications,
already known in mathematics. In the second place con-
sistency of the physical theory requires that the string
should be not just in ordinary 3-dimensional space, but in
one of 9 dimensions (or 10 if one includes time). Both of
these open up vast new (geometrical) territories which
strengthen the link between geometry and physics. This
works both ways, first large amounts of mathematics de-
veloped over previous centuries suddenly become relevant
and available for physicists to use. Second, and perhaps
more surprising, the ideas of physics including quantum
field theory feed back into mathematics and lead to sur-
prising developments. In fact the mathematical activity
generated by this interaction with physics is, in my opin-
ion, the most exciting development in mathematics of the
past decades, and we seem still to be in the early stage.

5. M-theory

After the initial rapid development of string theory, a
drawback appeared when it was realized that there were
five different competing models of string theory. There
seemed no reason why nature should prefer one to another.

But it was eventually discovered that all these five
string theories were, in a subtle way, equivalent to each
other. The best analogy is provided by the basic calculus
of analytic functions, in which a function f{z) can be expanded
as a power series in z. As a simple example, the binomial
theorem tells us that

(1+2°=1+3z+37+2.
However if we introduce a variable u = 1—z, then
(2-u)® = 8-12u + 6u’—i’,

represents the same function, so the two polynomials are
really equivalent under a simple change of variable. String
theories are like such power series expansions, but the
equivalence between two of them is much subtler than a
change of variable.

The five different string theories are now seen as different
viewpoints of one underlying theory, which is not yet
known but has been christened ‘M-theory’. By analogy
you might be given the power series expansion of say
(1 —z) about several different values of z and you might
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be able to check that they were equivalent without recog-
nizing that the function was a simple square root.

While a proper understanding of M-theory still eludes
us, much is now known about it. In particular the various
geometric results that have emerged from string theory
become related in interesting but mysterious ‘dualities’
whose real meaning has yet to be discovered.

No one can predict what the future holds in store for
M-theory. Are we nearly there, is the final understanding
just round the corner? Will it come from a few more technical
tricks or will it require some fundamental breakthrough?
The biggest question of all and the one that Einstein would
still be asking is: can M-theory be properly understood
within the present framework of quantum mechanics or
do we need to look for new foundations? I confess that I
myself remain an Einsteinian and would be happy to see
quantum mechanics replaced by something deeper. This
remains, as in Einstein’s day, a minority opinion but one
shared for example by Roger Penrose.

6. Topology

I have alluded at various stages to the impact that these
physical theories have had on geometry, without providing
much detail. Let me now try to rectify this.

Classical physics, describing various forces, is closely
linked (via Einstein and Maxwell) with notions of curvature
in geometry. The connection between physics and geometry
is therefore local: we can study the forces in a small piece
of space-time and compare it with the local geometry. By
contrast quantum physics is not related to geometry in
this way. Its relation is ‘global” and can only be seen in
the whole picture (even if we are dealing with microscopic
objects). The global aspect of geometry that is involved is
‘Topology’, such as the study of holes in surfaces or of
knots in 3-dimensional space.

The first indication that quantum mechanics was related
to topology was in the argument of Dirac which explained
why the electric charge of any particle was an integer
multiple of the charge of the electron. The integers came
in essentially as ‘winding numbers’, counting the number
of circuits made by a closed path. This number is topo-
logical because it does not depend on the detailed local
geometry of the circuit, how long or wiggly it is, but only
its overall global behaviour.

Winding numbers are related to the circle and hence to
the angular phase of electro-magnetism. There are similar
but more complicated topological properties associated
with the higher dimensional phases of Yang—Mills theory
so that the relation between quantum theory and topology
carries over to the other forces. In addition, as pointed out
earlier, moving strings generate surfaces which may have
holes and these are topological in nature.

So the physics of string theory and M-theory is replete
with topological information and many intricate and subtle
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aspects of the quantum theory are related to this underly-
ing topology.

So what kinds of specific geometrical/topological results
have emerged from the interaction with physics? In fact
these are quite diverse and cover many types of problems.
Here is a short list.

Knot invariants

The study of knots (closed pieces of string) is a standard
but difficult branch of topology. The key problem is to find
‘invariants” which will distinguish essentially different
knots. An invariant is something (a set of numbers) which
can be calculated from a picture of the knot, but is unal-
tered if we move the knot around to get a different picture. In
the 1970°s the world of topologists was astounded when
the New Zealand mathematician, Vaughan Jones discovered a
new type of invariant which helped to solve 100-year old
problems. Shortly after, Edward Witten gave a physical
explanation of the Jones invariants which cast new light
on them and led to much further progress.

Donaldson invariants

Geometers have studied the topology of closed surfaces
and their higher-dimensional analogues (manifolds) for a
long time. But a remarkable breakthrough came in the
early 1980’s when Simon Donaldson found some totally
new and unexpected invariants of 4-dimensional manifolds.
These were based on the Yang—Mills equations of physics
but it was not until later that Edward Witten again showed
how to interpret Donaldson’s invariants in terms of quantum
field theory. Later still, using duality ideas from string
theory, Witten and Seiberg made a significant improve-
ment of Donaldson theory which led to solutions of old
problems.

Counting curves

Classical algebraic geometers, ever since the time of Des-
cartes, studied curves in the plane given by polynomial
equations. It is a natural question to ask how many curves
there are of a given type, passing through a given number
of points. For example there is a unique straight line
through any two points and a unique conic (ellipse, etc.)
through five points. The question gets harder as the curves
get more complicated and given by polynomials of higher
degree. Quite remarkably, ideas from string theory have
led to a complete solution of this problem.

These and other examples are now part of a broad area
of ‘quantum mathematics’ — an evocative term which cor-
rectly conveys the origin of the ideas and results but is
very loosely used and ill-defined. One of the big challenges
for mathematicians at the present time is to see if one can
understand these new mathematical theories without re-
course to the physical background. Alternatively it may
become necessary to incorporate or absorb various physical
ideas into rigorous mathematics.

The converse process of providing rigorous mathematical
treatment of quantum field theory, string theory, M-
theory appears a very distant prospect. It will certainly
have to wait till physicists have sorted themselves out and
allowed the dust to clear.

6. Conclusion

Einstein would, I think, have been both surprised and gratified
by the extent to which his geometrization of physics has
progressed. The mathematical by-products would have
surprised him even further. But the fact that his ideas
were so fruitful would only encourage him in his fundamental
beliefs. In particular he would still be encouraging us to
dig beneath the mysteries of quantum mechanics. In another
century we might find what Einstein was looking for.
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