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We define a tensegrity factor, #g, for X-M-X linkages of
gas-phase MX, compounds (X is an atom of an insulat-
ing element) that is a measure of the matching of ‘ideal’
1,2-(single-bonded) M-X distance, d}}(}(, to the ‘ideal’
(non-bonded) 1,3-X---X distances, dﬂt}(}( The actually
observed 1,3-distance, dyy is given (within 1% error)
by 2CR(X)/Fs, where Fg (= 2-1.41y,) is shown to be an
ab initio quantity with no adjustable parameter, no
dependence on actual M-X distance or bond order and
with 2CR(X) depending only on whether M is an atom
of an insulating element QCR(X) = dXO?K) or whether M
is metallic 2CR(X) = 1.1dyy). This is illustrated for
gas-phase MX, compounds.
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IN current descriptions of molecular structure, geometry of
a molecule at rest is determined by the balance between
attractive and repulsive forces between charges. Such
electrostatic forces may be viewed as the electrostatic
equivalent of the balance between compressive and ten-
sile elements that define stable engineering tensegrity
structures'. The fundamental Fuller—Snelson notion is that
counteracting forces stabilize a structure consisting of
structural tension elements (continuous cables) and discon-
tinuous compression elements (struts) to stabilize itself.
The struts act in concert when loaded with the tension
elements, efficiently dispersing loads around a structure.
Such considerations could be used to define a ‘molecular
tensegrity’ that accounts for molecular shape at the simplest
level without requiring, say, the time-consuming computa-
tions of ab initio energy-landscape scenarios or even
force-field methodologies. We find that consideration of
just a two-dimensional X-M-X structure is sufficient,
with a single strut determining the 1,3-X---X distance, while
the M atoms provide the load that changes this distance.
A case study is made of gas-phase MX, compounds in
this communication.

Quantitative descriptions from a model of tensile integ-
rity structures are expected from a mechanical model” for
such molecules. A mechanical model is available from
the justification of a ‘ball-and-stick’ description®* of in-
teratomic distances using a principle of maximum me-
chanical hardness. The basic tenet of such a model is that
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for an energy-minimized, density-optimized molecule at
rest, the chemical potential =0, as in a free atom”,
Interatomic (1,2-bonded) distances may then be expressed
as a simple (mechanical) function of ‘core’ atomic sizes
which are consistent with the p = 0 condition®. Since the
balance of opposing forces determines the stable structure,
interatomic distances are a measure of this balance. The
way the 1,2-(M-X) and 1,3-(X—X) distances accommo-
date themselves in an X-M-X linkage would then form
the basic ingredients of the molecular tensegrity. We
avoid thereby complex energy-minimizing computations
in quantum methodologies or their force field approxima-
tions that start with a W # O state.

We use the empirical atomic size (from ref. 3), rs, con-
sistent with the u =0 condition. A rigorous justification of
this size is not necessary for the present illustrative pur-
poses. We have shown™ that a ‘single-bond” M-X distance,
d;%)( (the superscript, 00 or subscript, 0, used for future
continuity, refers to a ‘single’ bond for which there are no
‘unsaturated’, or ‘extrabonding’ valence electron, n, = 0)
may be written in terms of a core atomic size, rg as (the +
and — signs refer to the sign of the charge associated with
the atoms in brackets):

dyx=CRy(M) + CRy(X)
= {Coro(M) + Coro(X) ) par + [D§ + Dol (1)
={2.24rc(M) + 2.497c(X) }par + 74 pm (di_g)  (2)
= et { Clra(M) + Cir(X)}} par + (/3 i), (3)

where € (= 1) is an effective dielectric constant® (=1.05
in most cases) and CR; = €.4CT with CT (~ 2.15 ~ 1) and
Cy (~237~ n4/3/2) are semi-empirical parameters4 (for
€.7= 1). The ideal 1,3 non-bonded distance, dg% , is expected
to be a function of a characteristic size, CR(X), for a given
type of bonding interaction. In order to be consistent with
the charge-transfer’ sizes of eq. (1) we take’

d¥y = 2CR(X) = 2CRy(X) = 2[2.49r(X) + 111]. (4)

The observed 1,3-X---X distance, dxx(obs), of terminal X—
M-X linkages may be expressed’ by a term Fs, such that

dxx = 2CR(X)/Fs. (5)

The term Fs has been introduced earlier’ to express
changes in interatomic (1,2- as well as 1,3-) distances due
to the presence of n, ‘extrabonding’ valence electrons on
an atom with spin S, = n,/2. In general the size CR} of an
atom is changed to CRy/Fs where Fs=[1+ (2/m)
{88, + D}71=1, 1.18, 1.26. 1.32, 1.38 an 1.46 for
n,=0,1, 2,3, 4 and 5 respectively. The 1,3-X---X distance
is given as 2CRy(X)/Fs(X)), where (Fs(X)) = ){1/F(X) +
1/Fs(X’)} with X and X" allowed to have different values,
n, and n,”. The ligand close-packed radius, rcp, of Gilles-
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pie and coworkers” is well expressed by CR, » (X) = [CRy
(XKF(X)). We have compared as an illustration, the various
riep With CR, (X) (in pm) by the notation rpcp[CR, /(X)
(n,, n,))]. For oxygen we have (ionic radii, 140 pm)
140[140(0, 0)], 134[129(0, D], 120[118(1,1)], 114[114.5
(1,2)]; for chlorine, we find 181[180(0,0)], 168[166(0,1)],
151[152(1,1)], 144[147(1,2)], and so on.

We require obtaining Fs as a function of atomic sizes
from a mechanical model that expresses the dependence
of the X---X distance on the M atoms. For this, we define
an ideal charge-transfer ‘tensegrity’ factor, f3, (similar to
the tolerace factor® in perovskites), that is a measure of the
matching between ideal distances dyx (eq. (1)) and dyx
(eq. (4)), the idealized distance between X atoms. Thus

fo0 = digddyy = 0.5{ CRE(M)/CRy(X) + 1). (6)

The superscript, +, refers to charge-transfer states CR{ and
CRy in eq. (1). Equation (6) is an ab initio quantity based on
simple geometry and dependent only on the core atomic
size of M and X atoms (eqs (1) and (4)) without requiring
separate estimates of ionic character, for example. It is
this tensegrity factor that defines bounds on distances between
pairs of atoms in a molecule and to identify the struts.

One requires an interpretation of CRG(M)/CRy(X) to
exploit eq. (6) and obtain X---X (strut) distances for given
M and X in a manner that is independent of the actual
(cable) M—X dynamics or without really requiring an under-
standing of the complex dance (equations of motion) of
the charged particles. In real physical space, the cumula-
tive effect of these tension elements is represented by the
way the M atom is positioned, which is then expressed in
terms of omni-symmetrical aspects of the basic tensegrity
structure. We adopt Fuller’s assertion that both ‘macrocosmic
and microcosmic structures interact in the same way’ as
far as the balance of forces are concerned and ensure
‘most economic equilibrious packings’. The packing could
be expressed by the ratio R = CRYUM)/CRy(X), which is
characteristic for different coordination numbers, e.g.
R*=0.414 — equivalent to 5 = 0.707 — is the upper limit
for tetrahedral coordination or lower limit for octahedral
coordination. We may write

Fg(cal) = 2 — 1.41415, (7

such that dyy=2CR(X) (eq. (5)), when CR{(M)/CR,
(X) > 0.414 (Fs=1). We find (surprisingly) that for all
gas-phase MX, (n <4) compounds, eq. (7) reproduces well
the observed X---X distances with CR(X) = CRy(X), when M
is an atom of an insulating elements (at NTP) and
CR(X) = 1.1CRy(X), when M is an atom of a metallic ele-
ment. We discuss this aspect in another communication,
noting for the present that CRy(X) could represent an
ionic size and 1.1CRy(X), a van der Waals size.

Figure 1 shows a comparison of the observed and cal-
culated values (using eqs (5) and (7)) of the 1,3- X---X
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distance, dx..x for all gas-phase MX, compounds listed in
Weast”. The fit (R factor > 0.98) is surprisingly good
considering that the data have been obtained at a wide
range of temperature and pressure. For all gas-phase MX,
(n £4) compounds, we find that eqs (5) and (7) give an
equally good fit (using similar methods as above) that

dyx(0bs) = 1.04(0.004)dxy(caled)
(R=10.99, SD = 9 pm). (8)

The 1,3 O-0O distance in compounds such as NO,, SO,,
SeO,, SO;5 and SO,Cl, are given surprisingly well by eqs (5)
and (7). The main exceptions are the linear compounds
KrF, and XeF, (not shown). The ‘expansion’ of X---X
distances in dihalides, when M is a metallic element is an
additional new result, as expanding (or repulsive) non-
bonded interaction is not anticipated in dispersion forces
nor in Deb’s mechanical model”. Repulsive Casimir forces
could be expected for metallic spheres under certain
boundary conditions®.

We emphasize that the universal function of core size
that yields the tensegrity factor, f5y, does not have any
experimental input or adjustable parameter, given the
‘core’ atomic sizes, rg. Our procedure also does not use
circular arguments in the sense that we do not use as in-
puts the very parameters we wish to calculate. Not only is
dx._x(obsvd) different from the ideal value of 2CR(X) (eq.
(5)), the observed M—X distance is also different from the
ideal ‘single’-bond distance (eq. (1)). This is shown in Fig-
ure 2. For MO, compounds such as NO,, SO,, SeO,, C10,
and CO,, the M-O distance is given by dyx-~
dix/1.18, which is consistent with a ‘double bond” char-
acter’. The calculated X---X distance, however, does not
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Figure 1. Plot of observed non-bonded 1,3-X---X distance, dy...x (obs) in

MX, compounds vs calculated distance, dx..x(calcd) (eqs (5) and (7))
when X is an insulator atom. Triangles: M is an insulator atom
{CR(X) = CRy(X)}; circles M = metal, CR(X) = 1.1CRy(X); circles with
cross: M is the transition metal atom; Filled circles: Calculated in the
literature (ref. 9).
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Figure 2. Plots of observed M—X distance for various MX, compounds
(X = insulator). Triangles: M = insulator; Filled triangles M-X double
bond; Circles: M = metal.

depend on the M-X bond order. More significantly, the
M-X distance in MX, compounds in which M is a metal
atom is also given by dix/1.18, even if they are nominally
‘single’ bonds. The simultaneous ‘contraction’ of M-X dis-
tance and ‘expansion’ of 1,3-X---X is contrary to that anti-
cipated from eqs (5) and (7). This aspect will be treated
in more detail in another communication in the context of
atomic size and metallization of elements.
We further find that:

(1) The 1,3-X---X non-bonded distance is the more im-
portant structure-defining parameter (varying by ~ 1%)
than the 1,2-M-X bonded distance (varying by ~4%)
in an X—M-X linkage.

(2) Once the 1,2- and 1,3-distances are known, the geo-
metry (linear or bent, say, in MX, halides) follows quite
simply without requiring complex theoretical model-
ling® (such as participation of d electrons).

(3) Our methodology is (understandably) applicable to
terminal linkages in any gas-phase molecules, but not
always to the distance in ring systems, including, for
example, bridged linkages’ in M,X, dimers.

(4) Changes in core size due to changes in valence or
spin state are required to obtain 1,3- non-bonded X---X
distance for transition metal elements in MX, com-
pounds (n =3, 4).

In conclusion, we have shown that the 1,3-non-bonded
distance in an X—M-X linkage is a fundamental and environ-
ment-independent property of the ‘core’ sizes of M and X
atoms, without requiring inputs from quantum chemical
(valence bond or molecular orbital) procedures. This follows
from a simple mechanical model of molecular tensegrity,
when various forces are balanced for a L = 0 condition for
the chemical potential. Molecular geometry seems to be
available ab initio from purely classical considerations,
given a ‘core’ atomic size.
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Molecular differentiation in Murraya
Koenig ex L. species in India inferred
through ITS, RAPD and DAMD
analysis
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Two species of Murraya, viz. M. koenigii (L..) Spreng.
(2nr = 18) and M. parniculata (L.) Jack. 2n = 18), occur-
ring in India and used in indigenous system of medi-
cine, have a long-standing problem on systematic
disposition of the wild and cultivated forms (M. exofica/
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