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Occurrence of kornerupine-bearing
granulite from Karimnagar, Andhra
Pradesh
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Here, we report the occurrence of kornerupine-bearing,
quartz-free granulite from the Malial area of Karimna-
gar district, Andhra Pradesh. It occurs as small en-
claves and pods within the granite-gneiss, associated
with garnet-orthopyroxene—cordierite—biotite-gneiss.
Its mineral assemblage includes kornerupine—cordierite—
biotite—spinel, K-feldspar, ilmenite and magnetite.
Kornerupine, a hydrated magnesium-aluminium sili-
cate plots on the 4MgO-3A1,0;-4Si0, (4:3:4) com-
position along the solid solution join between 4:3:4
and 1:1:1 (3.5Mg0.3.5A1,0,.3.55i0,) compositions.
The relative Xy, values among various minerals are as
follows: cordierite > biotite > kornerupine > spinel. The
deduced post-peak metamorphic pressure—temperature
conditions of 5-6 kbar and 650-750°C for the korne-
rupine-spinel-bearing quartz-free granulites are con-
sistent with the experimental work on stability of
kornerupine in the MgO-Al,0;-Si0,-H,0 system.
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kornerupine,

KORNERUPINE is a rare mineral in metamorphic terrains
and has been reported from a few localities only in India.
The first report of kornerupine in India was made by
Murthy1 from Rannu, Uttar Pradesh. Later Balasubrah-
manyan® and Lal er al.’ reported kornerupine in a sap-
phirine-bearing granulite from Kovilpatti, Madras and
Sonapahar, Assam respectively. Grew” has described five
localities of kornerupine-bearing granulites from the Southern
Granulite belt and the Eastern Ghats belt. Recently Sajeev
et al.” reported kornerupine from the Ganguvarpatti, South
India. In the Karimnagar area, kornerupine occurs as
large prograde porphyroblasts in rocks devoid of sap-
phirine, whereas it is associated with sapphirine as pris-
matic aggregates in the above-mentioned areas, except
Kondapalle. Kornerupine-bearing granulites have been
reported from seventy other Precambrian regional terrains
of the world, including Germany6’7, Greenlands, Austra-
lia9’10, South Africa“, Sri Lanka'? and East Antarctica’®

Earlier sapphirine—spinel-bearing rocks from the East-
ern Dharwar Craton (EDC) in the Karimnagar area were
reported by Sarvothaman'®, Karimnagar and its adjoining
areas have attracted attention of petrologists on account
of the increasingly useful high-grade rocks that serve as a
window for the mid-lower continental crust.

*For correspondence. (e-mail: dprakash_ynu@yahoo.com)
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Quartz-free kornerupine-bearing granulite has been found
nearly 2 km SE of Malial village in Karimnagar district,
Andhra Pradesh (78°58"30”E long. and 18°41"30”N lat. in
the Survey of India toposheet 561/14; Figure 1).

Karimnagar area is predominantly a granite-gneiss ter-
rain along with exposures of charnockite, banded magnetite,
quartzite and dolerite dykes. The granite-gneisses and char-
nockites contain enclaves of high-grade supracrustals, in-
cluding quartz-free sapphirine—spinel granulites, gneisses
and basic granulites, which rarely occur in the entire
northeastern portion of EDC. Varieties of rocks from the
study area reveal a wide range of mineral parageneses
and chemical compositions'>. The major rock types
include charnockites (Opx—Pl-Perth-Qtz £ Bt £ Grt),
gneisses  (Opx—Crd-Bt-P1-Qtz—Perth = Grt £ Sil £ Spl;
Bt-Qtz-Pl = Crd £ Hbl + Spl), basic granulites (Cpx—PI-
Qtz £ Opx £ Hbl), quartz-free granulites (Spr—Spl-Crd—
Bt + Opx * Kfs, Bt—-Crd—Krn—Spl + Kfs, And-Bt—Kfs—Chl),
granites (Qtz—P1-Kfs = Bt £ Hbl), meta-dolerites (Cpx—
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Figure 1. Geological map of the area NW of Karimnagar.
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Figure 2.

a, Photomicrograph of kornerupine-bearing quartz-free granulite showing fractured megacryst of kornerupine having prominent inclu-

sion of spinel. Cordierite is present in the matrix (under crossed nicols). b, Photomicrograph showing spinel and cordierite isolated to form coarse
idioblastic or subidioblastic kornerupine (under plane polarized light). Krn, Kornerupine; Crd, Cordierite; Spl, Spinel; Bt, Biotite; Kfs, Potash feld-

spar; Mag, Magnetite.

Pl1+ Bt £ Qtz £ Chl), banded magnetite quartzites and
quartzites.

Rajesham ez al.'® dated the charnockites and granite-
gneisses from the Karimnagar area having Rb—Sr isochron
age of ~2500 Ma and interpreted it to represent single major
metamorphic event; the high-grade supracrustals that occur
as enclaves in these should be obviously older than
2500 Ma.

Kornerupine-bearing rock is dark coloured, massive and
coarse-grained. It shows inequigranular granoblastic texture
(Figure 2 @). The main assemblage includes kornerupine—
cordierite-biotite—spinel & potash feldspar + ilmenite, magnet-
ite (minor amount).

Kornerupine is colourless, feebly pleochroic and occurs
as coarse prismatic crystals. Spinel and cordierite are iso-
lated to form coarse idioblastic or subidioblastic kornerupine
(Figure 2 b) that marks the following reaction:

Spinel + cordierite + vapour = kornerupine *+ corundum.

Biotite flakes are present as inclusions and also in direct
grain contact with kornerupine. Idioblastic to subidioblastic
grains of spinel are also found as inclusions within
kornerupine and nowhere in direct contact with cordierite
and biotite. Potash feldspar is present in minor amount.
Thin sections do not preserve complete reaction textures
like coronas and symplectites to infer any other reaction.
Representative electron microprobe data of kornerupine
and associated minerals are given in Table 1. Electron
microprobe analysis was carried out in the EPMA Labo-
ratory, IIT Roorkee on a JEOL JXA-8600M unit with
three fully focused spectrometers. Carbon-coated thin sections
of approximately 40 um thickness were used for analysis.
The instrument was operated at a probe current of 2 x 10~
8 A with an accelerating voltage of 15kV and electron
beam diameter of 2 um. ZAF oxide correction was made.
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Kornerupine is a hydrated magnesium—aluminium sili-
cate and the analyses plot on the 4Mg0.3A1,0;.45i0,
(4:3:4) composition (Figure 3) along the solid solution
join between 4:3:4 and 1:1:1 (3.5Mg0.3.5A1,0;.
3.5510,) with slight deficiency in Si, Mg and higher Al
Appreciable amount of Fe* is present ranging between
0.128 and 0.139 p.fu. Xy, [Xy = Mg/(Mg + Fe™)] values
show a restricted range between (.786 and 0.795. Boron
was not sought. The name prismatine™’ has been recently
revalidated for kornerupine having boron >0.5 p.fu.
Cordierite is the most magnesian phase (Xy,: 0.851). Bio-
tite has Xy, ranging between 0.814 and 0.849, with low
fluorine content. Spinel (hercynite) is relatively iron-rich
(Xmg: 0.382) in kornerupine-bearing rocks compared to
other quartz-free granulites. The relative Xy, variation in
the different phases is cordierite > biotite > kornerupine >
spinel (I. N. Sharma, unpublished).

Kornerupine and other minerals from the quartz-free
granulites have been plotted in the SiO,—(Mg, Fe)O—(Al,
Fe*, C1),0;5 triangular diagram (Figure 4 a). The impor-
tant mineral phase, biotite does not plot in this diagram
and has to be treated as an excess phase. To resolve this
problem, a projection from potash feldspar (Figure 4 b) has
been used in the triangular diagram {SiO,~6(K,0 + Na,O)} —
(Fe, Mg)O — {(Al, Cr, Fe’"),05 — (K,0 + Na,0)}.

Kornerupine-bearing quartz-free granulites are found
in association of gneisses and two-pyroxene granulites.
The gneisses contain garnet, orthopyroxene, cordierite,
biotite and feldspar as the main minerals, whereas two-
pyroxene granulites consist of orthopyroxene, clinopy-
roxene, hornblende and plagioclase as the major minerals.

Precise geothermobarometric estimates have not been
made for the kornerupine-bearing quartz-free granulites due
to lack of well-defined thermodynamic data for kornerupine
and absence of relevant phases as P-T sensors. However,
a reasonable P-T estimate on the basis of conventional
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Table 1. Representative microprobe analyses of the coexisting minerals (sample no. 69XIX)
Krn Bt
Crd Spl

Spot no. 1R 2R 3C 4R SR 6C
SiO, 29.73 29.24 49.82 37.39 38.96 0.00
TiO, 0.06 0.04 0.00 1.07 2.62 0.02
ALO; 41.01 40.98 32.56 16.49 15.57 57.99
Cr,0s 0.20 0.13 n.d. 0.06 0.12 3.14
FeO** 8.53 8.75 3.58 7.21 8.55 28.87
MnO 0.19 0.29 0.04 0.00 0.00 0.15
MgO 15.68 15.10 11.54 22.73 21.04 9.24
ZnO n.d. n.d. n.d. 0.00 0.00 0.54
CaO 0.03 0.02 0.03 0.05 0.00 0.00
Na,O 0.03 0.06 0.08 0.18 0.13 n.d.
K,O n.d. n.d. 0.00 8.71 8.58 n.d.
F n.d. n.d. n.d. 0.07 0.10 n.d.
-0 - - - 0.03 0.04 -
Total 95.46 94.61 97.63 93.93 95.63 100.35
Oxygen basis 21 21 18 22 22 8
Si 3.821 3.798 5.053 5.433 5.569 0.000
AlY 0.179 0.202 3.889* 2.567 2.431 3.748*
ALY 6.035 6.073 - 0.263 0.198 -
Ti 0.006 0.004 0.000 0.114 0.284 0.001
Cr 0.020 0.014 n.d. 0.007 0.014 0.138
Fe’* 0.128 0.139 n.d. n.d. n.d. 0.110
Fe?* 0.774 0.796 0.305 0.873 1.023 1.221
Mn 0.021 0.032 0.004 0.000 0.000 0.007
Mg 3.004 2.923 1.743 4.926 4.486 0.754
Zn n.d. n.d. n.d. 0.000 0.000 0.022
Ca 0.004 0.003 0.003 0.008 0.000 0.000
Na 0.008 0.016 0.012 0.050 0.036 n.d.
K n.d. n.d. 0.000 1.608 1.564 n.d.
F n.d. n.d. n.d. 0.032 0.046 n.d.
Xng 0.795 0.786 0.851 0.849 0.814 0.382

n.d., Not determined; C, Core; R, Rim; *, Total Al in place of Al"Y and AlVI; *#% Total iron as FeO,
Fe** = 42 — [(2R*™) + (3R™) + (4R*")] for kornerupine and Fe** = 16 — [(2R*") + (3R**) + (4R*")] for spinel.
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Figure 3. (Fe®*, Mg)O-Al,05-Si0; triangular plot showing korneru-
pine composition. Open circle indicates composition of kornerupine
from the study area. Open triangle (Ellammankovilpatti), square (Gan-
guvarpatti) and solid triangle (Ponakkadu) are kornerupine composition
plots from Grew* for comparison purpose.
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geothermobarometry and convergence method for the re-
trieval of peak P-T conditions applicable to the associ-
ated rocks has been attempted. Basic granulites yield a
value of 7-8 kbar and 800-850°C. The average temperature
(600-750°C) for the adjoining garnet—orthopyroxene—
cordierite—biotite-gneiss is obtained from various Fe’*—
Mg exchange models of garnet-biotite, garnet—cordierite
and garnet-orthopyroxene pairs. Lower values from the
garnet—biotite Fe’*~Mg exchange geothermometers may
be due to re-equilibration during retrogression. Average
pressure in the range of 4.5-6 kbar at 700°C is obtained
by various geobarometric models of garnet—cordierite—
sillimanite—quartz and garnet—orthopyroxene—plagioclase—
quartz applied to the garnet—orthopyroxe—cordierite—biotite—
gneiss (Table 2).

According to Seifert'®, boron-free kornerupine has
been synthesized in the system MgO-Al,05;-Si0,—H,0
(MASH) at water pressure above 4.5 kbar and temperatures
in excess of 735°C. Syntheses of boron-free kornerupine
have also been described by Schreyer and Seifert', and
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Table 2. P-T estimate for Grt—Opx—Crd—Bt-gneiss (sample 508a)

Sample 508a/spot no. (X (Xmp)™ (X (Xmip) o™ Xea)”
R6, R3 (Grt—Bt) 0.277 0.727 - - -
R28, R9 (Grt—Crd) 0.256 - 0.748 - -
C13, C9, C3 (Grt—Opx—P1) 0.321 - - 0.618 0.416
Temperature (°C) at 6 kbar Pressure (kbar) at 700°C

Grt—-Bt Grt—Crd Grt—Opx Grt—Crd-Sil-Qtz Grt—Opx—P1-Qtz
K, 5.577 8.000 2.774 Pug Pre Pug Pr.
In K, 1.719 2.079 1.020
1 605 674 778 6.01 6.38 - 4.82
2. 585 722 713 6.02 - - 4.43
3. 647 683 735 - 5.30 4.02 3.51
4 584 666 669 6.23 - 4.10 4.30
5. 596 623 698 4.80 5.40 4.25 4.27
Average 603 £ 26 674+ 36 719+ 41 5.771£0.65 5.6910.60 4.12+0.12 4.27+0.48

Grt—Bt: 1. Thompson®*; 2. Ferry and Spear®; 3. Dasgupta e al.”’; 4. Bhattacharya er al.”” (Hackler and Wood™);

5. Berman® (with ideal biotite).
Grt—Crd: 1. Thompson24; 2. Bhattacharya et al®®; 3. Aranovich and Podlesskii’'; 4. Perchuk®?; 5. Nichols ef al.*.

Grt—Opx: 1. Sen and Bhattacharya”; 2. Harley35; 3. Bhattacharya et al.”’; 4. Berman?®, 5. Lal®.
Grt—Crd-Sil-Qtz: 1. Thompson”; 2. Perchuk et al.’; 3. Bhattacharya38; 4. Aranovich and Podlesskii’'; 5. Berman®’.
Grt—Opx—P1-Qtz: 1. Bohlen et al.*®; 2. Perkins and Chipera40; 3. Bhattacharya et al'; 4. Berman®’; 5. Lal*®.
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Figure 4. a, Topology of phase relations for quartz-free granulites
shown in the SiO,—(Mg, Fe)O—(Al, Fe’*, Cr),0; triangular diagram.
Small solid circles show plot of mineral compositions and large solid
circles represent observed mineral parageneses. b, Topological configu-
ration for kornerupine-bearing quartz-free granulites shown in the
[(Si0-6(K20 + Na,0)]-(Fe, Mg)O-[(Al, Cr, Fe’*),0;~(K,0 + Na,0)]
projection from potash feldspar. Small solid circles show plot of min-
eral compositions.
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(marked as reactions 1-3) in the kyanite—sillimanite phase diagram
along with P—T estimates for different high-grade rocks from the study
area. (i) Chl+ Crd + Crn == Krn + V (lower temperature limit). (ii)
Chl + Crd + Spr == Krn £ V (lower pressure limit). (iii) Krn == Crd +
En + Spr+ V (upper temperature limit). I, P-T conditions for basic
granulite.

Yoder®*!. In the MASH system at pressures in the vicin-
ity of 10 kbar and temperatures around 850°C. Robbins
and Yoder™ have experimentally found that boron-bearing
kornerupine is a high temperature breakdown product of
tourmaline (dravite) at 895°C and 5 kbar pressure.
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The thermal peak of metamorphism (~850°C) at moder-
ately high pressures of 6 kbar is more than the upper sta-
bility limit of kornerupine (Figure 5). This proves that
kornerupine was formed after the thermal peak of meta-
morphism. P-T estimates (700-750°C and 4.5-5.5 kbar)
for the associated rocks from the study area lie close to
the lower temperature stability field of kornerupine (Figure 5).
The presence of iron and lower activity of water may
shift the stability field of kornerupine towards the lower
temperature side in the FeO-MgO-Al,05;-Si0,—H,0 sys-
tem.

The absence of anhydrous minerals of granulite facies
conditions (orthopyroxene, sapphirine) suggests that korne-
rupine was formed slightly after the thermal peak conditions
of metamorphism during which the activity of water in-
creased, thus providing conditions for the formation of
hydrous phases. This observation can further be rein-
forced by the coarse grain size of kornerupine and its as-
sociation with other hydrous minerals such as biotite and
cordierite, which suggests an increase in the activity of
fluids shortly following the metamorphic climax. The es-
timation of thermal peak of metamorphism at ~850°C
also reinforces the observation that kornerupine was formed
after the metamorphic peak. The only mineral remnant of
the thermal peak is spinel. This type of late post-metamorphic
mineral generation due to the influence of fluids from
crystallizing partial melts has been reported from Broken
Hill, Australia®.
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Generation of very high resolution
gravity image over the Central Indian
Ridge and its tectonic implications
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Satellite altimetry can be used to infer subsurface geo-
logical structures analogous to gravity anomaly maps
generated through ship-borne survey. In this study,
free-air gravity image has been generated over the Cen-
tral Indian Ridge using very high resolution database as
obtained from Geosat GM, ERS-1, Seasat and TOPEX/
POSEIDON altimeter data. Isostatically compensated
regions could be identified with all fracture zones
clearly demarcated in this map.

Keywords: Central Indian Ridge, free-air gravity, Geosat
geodetic mission, satellite altimetry, seafloor spreading.

THE segment of the northern branch of the mid-Indian
Ocean ridge system, which lies between Rodriguez Triple
Junction and the equator, broadly forming a north—south
lineation, is referred as the Central Indian Ridge (CIR)1
(Figure 1). The Indian Ocean has experienced, along with
three main phases of seafloor spreading, two major plate
reorganizations from the late Jurassic to the present. The
first phase of spreading started in the northwest—southeast
direction and resulted in India’s movement away from
Antarctic—Australia during the early Cretaceous. During
the middle Cretaceous, it appears that the Indian plate rotated
from its early NW-SE to N-S direction and moved at a
slow spreading rate. During the second phase of spreading,
India drifted in the north—south direction from Antarctica
with a rapid speed of 11 to 7 cm/yr. The Indian and Aus-
tralian plates merged and formed a single Indo-Australian
plate during the middle Eocene. The third phase of
spreading was initiated in the northeast—southwest direc-
tion, and appears to continue since then. Also, ridge jumps
occur as tectonic events and create more complexity to
the evolution of ocean floor, besides plate reorganizations.
Due to the processes of ridge jumps and frequent readjust-
ment of the ridge segments, the northern part of the pre-
sent-day CIR came into existence since the past 30 Ma.
The CIR complex has not been sufficiently explored
using satellite geoid/gravity data. Satellite altimetry has
recently emerged as an efficient alternative for expensive
and hazardous ship-borne gravity surveys™. The averaged
sea surface height as obtained from satellite altimeter is a
good approximation to the classical geoid, which contains
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