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Ricci flow and Perelman’s proof of the

Poincaré conjecture

Siddhartha Gadgil* and Harish Seshadri

The Poincaré conjecture was one of the most fundamental unsolved problems in mathematics for
close to a century. This was solved in a series of highly original preprints by the Russian mathemati-
cian Grisha Perelman, for which he was awarded the Fields Medal (2006). Perelman’s proof,
building on the work of Hamilton, was based on the Ricci flow, which resembles a nonlinear heat
equation. Many of Perelman’s and Hamilton’s fundamental ideas may be of considerable significance
in other settings. This article gives an exposition of the work, starting with some basic concepts.
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THE field of topology was born out of the realization that
in some fundamental sense, a sphere and an ellipsoid re-
semble each other but differ from a torus — the surface of
a rubber tube (or a doughnut). A striking instance of this
can be seen by imagining water flowing smoothly on
them. On the surface of a sphere or an ellipsoid (or an
egg), the water must (at any given instant of time) be sta-
tionary somewhere. This is not so in the case of the torus.

In topology, we regard the sphere and the ellipsoid as
having the same topological type, which we make precise
later. Topology is the study of properties that are shared
by objects of the same topological type. These are generally
the global properties. Understanding the different topo-
logical types of spaces, the so-called classification problem
is thus a fundamental question in topology.

In the case of surfaces (more precisely closed surfaces),
there are two infinite sequences of topological types. The
first sequence, consisting of the so-called orientable sur-
faces, is composed of the sphere, the torus, the two-holed
torus, the three-holed torus and so on (see Figure 1). One
would like to have a similar classification in all dimensions.
However, due to fundamental algorithmic issues, it is im-
possible to have such a list in dimensions four and above.

There is a simple way to characterize the sphere among
surfaces. If we take any curve on the sphere, we can
shrink it to a point while remaining on the sphere. A
space with this property is called simply-connected. A torus
is not simply-connected as a curve that goes around the
torus cannot be shrunk to a point while remaining on the to-
rus. In fact, the sphere is the only simply-connected surface.

In 1904, Poincaré raised the question as to whether a
similar characterization of the (three-dimensional) sphere
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holds in dimension 3. That this is so has come to be
known as the Poincaré conjecture. As topology exploded
in the twentieth century, several attempts were made to
prove this (and some to disprove it). However, at the turn
of the millennium, this remained unsolved. Surprisingly,
the higher dimensional analogue of this statement turned
out to be easier and has been solved.

In 2002-03, three preprints'~ rich in ideas but frugal
with details, were posted by the Russian mathematician
Grisha Perelman, who had been working on this in soli-
tude for seven years at the Steklov Institute. These were
based on the Ricci flow, which was introduced by Rich-
ard Hamilton in 1982. Hamilton had developed the theory
of Ricci flow through the 1980s and 1990s, proving many
important results and developing a program® which, if
completed, would lead to the Poincaré conjecture and
much more. Perelman introduced a series of highly original
ideas and powerful techniques to complete Hamilton’s
program.

It has taken two years for the mathematical community
to assimilate Perelman’s ideas and expand his preprints
into complete proofs. Recently, a book’ containing com-
plete and mostly self-contained proofs of the Poincaré
conjecture has been posted. An earlier set of notes had
filled in many details in Perelman’s papers®.

In this article we attempt to give an exposition of
Perelman’s work and the mathematics that went into it.

—
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Figure 1. The first three orientable surfaces.
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An expanded version of this article will be submitted to
the Mathematical Intelligencer.

Some notions of topology

In this section, we informally formulate the Poincaré con-
jecture. To do this, we first need to introduce the higher-
dimensional analogues of surfaces, namely smooth mani-
folds. For those in the know, we consider throughout dif-
feomorphism types of smooth manifolds as this suffices
in dimension 3.

We first take a closer look at surfaces. A surface in R’
is the set of zeroes of a smooth function f(x, y, z) which
is non-singular, i.e. for each point on the surface the gra-
dient Vf(x, y, z) of fis non-zero. Basic examples of this
are the plane z = 0 and the sphere x* + y* + 22— 1 = 0.

In analogy with this, we can consider a subset M — R”
which is the set of zeroes of n—k smooth functions
1.5 fu whose gradients Vf; are linearly independent for
all points in M. Such a subset of R" is a k-dimensional
manifold or a k-manifold.

More generally, a set M given as above may have several
components. We consider each component of M to be a k-
manifold. For the rest of this article, by a k-manifold M
we mean a component of the subset M — R" which is the
set of zeroes of n —k smooth functions fi,..., fo_r, Whose
gradients Vf; are linearly independent for all points in M.
(This is equivalent to the usual definition by a theorem of
Nash.)

We say that two smooth k-dimensional manifolds M
and N are diffeomorphic if there is a smooth one-to-one
correspondence f: M — N between the points of the mani-
folds with a smooth inverse. The function fis called a dif-
feomorphism.

We say that a manifold (defined as above) is closed or
compact if it is contained in a bounded subset of R".

In this language, the Poincaré conjecture can be stated
as follows.

Conjecture (Poincaré). Any closed, simply-connected
three-manifold is diffeomorphic to the three-dimensional
sphere §°.

For a brief history of the Poincaré conjecture, see Milnor’.

A small region around any point in a surface can be
given a pair of local coordinates. For example, away from
the poles, the latitude and longitude form coordinates for
any small region on the sphere. Local coordinates corres-
pond to making a map of a region of the surface on a
piece of paper in such a way that objects that are close to
each other on the surface remain close on the map. One
cannot make a single such map of the whole surface, but
it is easy to see that one can construct an atlas of such
maps. Each map is usually called a chart.

Similarly, a small region around any point in a k-mani-
fold M can be given a system of k local coordinates
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Xy,... X It is frequently convenient to study local properties
of a manifold using these coordinates. These allow one to
treat small regions of the manifold as subsets of the
Euclidean space, using a chart as in the case of surfaces.
Using an atlas of such charts, one can study the whole
manifold.

Why the Poincaré conjecture is difficult

Both the plane and three-dimensional space are simply-
connected but with an important difference. If we take a
closed, embedded curve in the plane (i.e. a curve which
does not cross itself), it is the boundary of an embedded
disc. However, an embedded curve in three-dimensional
space may be knotted (see Figure 2). This means that as
we deform a knotted curve to a point, along the way it
must cross itself.

Thus, an embedded curve in a simply-connected three-
manifold M may not bound an embedded disc. Further-
more, such a curve may not be contained in a ball B in M.
While embedded disks are useful in topology, immersed
disks (i.e. disks that cross themselves) are not. It is this
which makes the Poincaré conjecture difficult (in dimen-
sion 3).

The analogue of the Poincaré conjecture in dimensions
5 and above is easier than in dimension 3 for a related
reason. Namely, any (two-dimensional) disc in a manifold
of dimension at least 5 can be perturbed to an embedded
disc, just as a curve in three-dimensional space can be
perturbed so that it does not cross itself.

What made Perelman’s proof and Hamilton’s program,
possible was the work of Thurston in the 70s, where he
proposed a kind of classification of three-manifolds, the
so-called geometrization conjecture®. Thurston’s geome-
trization conjecture had as a special case the Poincaré
conjecture, but being a statement about all three-manifolds
could be approached without using the hypothesis of
simple-connectivity.

However, most of the work on geometrization in the
1980s and 1990s was done by splitting into cases, so to

Figure 2. A knotted curve.
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prove the Poincaré conjecture one was still stuck with
trying to use the simple-connectivity hypothesis. An
exception to this was Hamilton’s program. Interestingly,
Perelman found a nice way to use simple-connectivity
within Hamilton’s program, which simplified his proof of
the Poincaré conjecture (but not of the full geometrization
conjecture).

To introduce Hamilton’s approach we need to reformulate
the Poincaré conjecture as a statement relating topology
to Riemannian geometry, namely that a compact, simply-
connected three-manifold has an Einstein metric. To make
sense of this we need some Riemannian geometry.

Some Riemannian geometry
Intrinsic differential geometry and curvature

In intrinsic differential geometry, we study the geometry
of a space M in terms of measurements made on it. This
began with the work of Gauss, who was involved in sur-
veying large areas of land where one had to take into ac-
count the curvature of the earth. Even though the earth is
embedded in three-dimensional space, the measurements
we make cannot take advantage of this.

Concretely, one has to consider the question of whether
we can make a map of a region of the earth on a flat surface
(a piece of paper) without distorting distances (allowing
all distances to be scaled by the same amount). This is
impossible, as can be seen by considering the area of the
region consisting of points with distance at most r from a
fixed point P on the surface M. The area in case M is a
sphere can be seen to be less than nrz, which would be
the area if we did have a map that did not distort dis-
tances. In fact, for small r, the area of the corresponding
region on a surface is of the form nr2(1 - %rz +...), and
K is called the Gaussian curvature.

Intrinsic differential geometry gained new importance
because of the general theory of relativity, where one
studies curved space-time. Thus, we have manifolds with
distances on them that do not arise from an embedding in
some R". This depended on the higher-dimensional and
more sophisticated version of intrinsic differential geo-
metry developed by Riemann. Today, intrinsic differential
geometry is generally referred to as Riemannian geometry.

To study Riemannian geometry, we need to understand
the analogues of the usual geometric concepts from Euclid-
ean geometry as well as the new subtleties encountered in
the more general setting. Most of the new subtleties are
captured by the curvature.

Tangent spaces

Let M be a k-dimensional manifold in R" and let pe M
be a point. Consider all smooth curves y: (-1, 1) > M
with y(0) =p. The set of vectors v=7v"(0) for such
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curves Y gives the tangent space T,M. This is a vector
space of dimension k contained in R". For example, the
tangent space of a sphere with centre as the origin at a point
p on the sphere consists of vectors perpendicular to p.

If a particle moves smoothly in M along the curve o(f),
its velocity V(r) = a.’(¢) is a vector tangent to M at the
point o(?), i.e. V(1) € TopnM.

Riemannian metrics

If o (a, b) - R™ is a smooth curve, then its length is given
by (o) = V; llo’(r) Il dz. In Riemannian geometry we con-
sider manifolds with distances that are given in a similar
fashion in terms of inner products on tangent spaces.

A Riemannian metric g on M is an inner product speci-
fied on T,M for each p € M. Thus, g refers to a collection
of inner products, one for each T,M. We further require
that g varies smoothly in M. For a point p € M and vectors
V, We T,M, the inner product of V and W corresponding
to the Riemannian metric g is denoted g(V, W).

A Riemannian manifold (M, g) is a manifold M with a
Riemannian metric g on it. Recall that near any point in
M, a small region U < M can be given a system of local coor-
dinates xi,..., x;. If we denote the corresponding coordi-
nate vectors by é,..., &, then for any point p in U the inner
product on T,U is determined by the matrix g; = g(é;, &)).
This is a symmetric matrix.

The first examples of Riemannian manifolds are
M < R", with the inner product on T,M, the restriction of
the usual inner product on R” This metric is called the
metric induced from R".

A second important class of examples are product met-
rics. If (M, g) and (N, h) are Riemannian manifolds, we
can define their product (M x N, g @ h). The points of
M x N consist of pairs (x,y), with xe M and y € N. The
tangent space Tt ,,M X N of the product consists of pairs
of vectors (U, V) with Ue T\M and Ve T,N. The inner
product (g @ h) is given by

(g ® MU, W), U, V) =g, U)+hV, V).

We can identify the space of vectors of the form (U, 0)
(respectively (0, V) with T.M (respectively T\,N).

Distances and isometries

Given a pair of points p, ¢ € M in a Riemannian manifold
(M, g), the distance d(p, q) between the points p and g is
the minimum (more precisely the infimum) of the lengths
of curves in M joining p to q.

For pe M and b > 0, the ball of radius r in M around p
is the set of points ¢ € M such that d(p, gq) < r. Note that
this is not in general diffeomorphic to a ball in Euclidean
space.
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Two Riemannian manifolds (M, g) and (N, h) are said
to be isometric if there is a diffeomorphism from M to N,
so that that between any pair of points in M is the same as
that between their images in N. In Riemannian geometry,
we regard two isometric manifolds as the same.

Geodesics and the exponential map

Geodesics are the analogues of straight lines. A straight
line segment is the shortest path between its end points. A
curve with constant speed that minimizes the distance be-
tween its end points is called a minimal geodesic.

More generally, a geodesic is a smooth curve with con-
stant speed that locally minimizes distances, i.e. it is a
smooth function y: (a, b) — M such that Ity (9l is con-
stant and has the following property: for any p =7y (%),
there is an € > 0 so that the segment of the curve y from
time f, — € to fy + € has minimal length among all curves
joining Y (tg — €) to 7y (zp + €).

Let p e M be a fixed point. Then we can find r >0
such that if d(p, q) < r, then there is a unique minimal
geodesic 7y joining p to gq. We can parametrize Yy (i.e.
choose the speed along vy) so that y(0)=p and y (1) = q.
Then the initial velocity y’(0) gives a vector in T,M with
norm less than ». This gives a one-to-one correspondence
between points g in M with d(p, g) < r and vectors Ve T,M
with norm less than r. The point that corresponds to the
vector V is denoted by exp,(V) and this correspondence is
called the exponential map.

As an example, consider the exponential map at the
north-pole of the two-sphere p. This map is one-to-one on
Bo(m) and it maps By(T) to the sphere minus the south pole.

Sectional, Ricci and scalar curvatures

Let p e M be a point and let § c T,M be a two-dimen-
sional subspace. Choose an orthonormal basis {U, V} of §
and consider the following family of closed curves in M:

C.(0) = exp (rcos(8) U+ rsin(®)V), 6 € [0, 27].

It can be proved that the length of C, has the following
expansion:

Ic,) = 27“’[1—%@1’2 +O(r3)].

We define the sectional curvature of (M, g) along & to be
the number K(p, &) above. Other notations for sectional
curvature include K (p, &) to clarify what metric we con-
sider and K(p, U, V) to indicate that & is the linear span of
U and V. In the latter notation, we put K(p, U, V) =0, if U
and V are linearly dependent. We often omit the point p
in the notation if it is clear from the context.
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Averaging all the sectional curvatures at a point gives
the scalar curvature R(p). More precisely, let {E,,..., E,}
be an orthonormal basis of T,M. Then we define

R(p)=Y) K(E,E)).

ij

There is an intermediate quantity, called the Ricci tensor
which is fundamental in our situation. The Ricci tensor
R(U, V) at a point p € M depends on a pair of vectors U
and Vin T,M. Further, it is linear in U and V and is sym-
metric (i.e. Ric(U, V) = Ric(V, U)).

If U is any unit vector in T,M, then we define

Ric(U, U)=K(E,,U)+ ... + K(E,, U).

By linearity, for a general vector aU, with U a unit vec-
tor, Ric(alU, alU) = a’Ric(U, U). Further, by linearity and
symmetry, if U and V are any two arbitrary vectors in
T,M, then we put Ric(U,V)= L (Ric(U+V,U+V)-
Ric(U-V,U-V)) (by the analogue of the formula
(a + b)? = (a - b)* = 4ab).

Remark. It is important to note that in local coordinates
these curvature quantities can be expressed in terms of g;;
and its first and second derivatives.

We consider some examples.

(1) Euclidean space. This is just R" with the usual inner
product. In this case, all the sectional curvatures are
zero. Hence so is the Ricci tensor and the scalar cur-
vature.

(2) Sphere S"(r) of radius r with the metric induced
from R" + 1. In this case, all sectional curvatures are
equal to 7%, Ric(U, V) = (n — )r *g(U, V) and R(p) =
n(n — 1)1*’2 for any point p. Here g(-,-) is (the restric-
tion of) the standard inner product in R”,

(3) There is an analogue of example 2, called hyperbolic
space, for which the sectional curvature is —#72, The
underlying manifold can be taken to be R". We will
not describe the metric since we will not need it.

We have the following important converse of the
above examples: Let (M, g) be a simply-connected,
complete, Riemannian manifold of constant sectional
curvature k. Then M is isometric to the Euclidean
space, the sphere of radius «/1/_k or hyperbolic
space according as k=0, k > 0 or k < 0 respectively.

(4) A product Riemannian manifold (M XN, g =g, ® g,):
If € is a plane in T,(M X N) that is tangent to M (re-
spectively N), then Ki(p, &) =K |(§) (respectively
K>(&)). Here K, and K, denote the sectional curva-
tures with respect to g; and g,. On the other hand, if
& is the span of a vector tangent to M and one tan-
gent to N, then K(&) = 0.
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(5) As a special case of the above, consider a surface M
which is the product of two circles, possibly of dif-
ferent radii, with the product metric. Then the tan-
gent plane at any point is spanned by a vector
tangent to the first circle and one tangent to the second
circle. Hence the sectional curvature of M at any
point is zero.

(6) Another example of a product metric that we need is
that on M = §* x R. Tn this case, the sectional curva-
ture K(x, &) is 1 if & is the tangent plane of S and 0
if & contains the tangent space of R.

Manifolds with non-negative sectional curvature

We have defined sectional curvature in terms of the
growth of lengths of circles under the exponential map. In
other words, sectional curvature measures the divergence
of radial geodesics.

In particular, if a Riemannian manifold has non-negative
curvature, geodesics do not diverge faster than in Euclidean
space. This has strong consequences for the geometry and
topology of these manifolds. In fact, if a simply-connected
three-manifold (M, g) has non-negative sectional curvature,
it has to be diffeomorphic to one of R3 s*and °x R.

Scaling and curvature

Suppose (M, g) is a Riemannian manifold and ¢ >0 is a
constant. Then the sectional curvature K” of the Riemannian
manifold (M, cg) is related to the sectional curvature K of

(M, g) by
K'(p, &) =c'Kp, &)

for every point p € M and every tangent plane §  T,M at
that point.

Note that if ¢ is large, then K’ is small. Hence, given a
compact Riemannian manifold (M, g) we can always
choose ¢ large enough so that (M, cg) has sectional curva-
tures lying between —1 and 1.

Einstein metrics and the Poincaré conjecture

An Einstein metric is a metric of constant Ricci curvature.
More precisely, an Einstein metric with constant curva-
ture a is one that satisfies, for allpe M and U, Ve T,M,
the equation

Ric(U, V) = ag(U, V).

In general relativity, one studies an action functional on
the space of Riemannian metrics called the Einstein—Hil-
bert action, which is the integral of the scalar curvature of
a metric. Einstein metrics are the critical points of this
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functional among Riemannian metrics on a manifold with
fixed volume.

To relate Einstein metrics to the Poincaré conjecture,
one notes that an Einstein metric g on a three-manifold
necessarily has constant sectional curvature (in all dimen-
sions metrics of constant sectional curvature are Einstein
metrics). Hence one concludes that if (M, g) is closed,
simply-connected and Einstein, then (M, g) is isometric to
$° with a round metric. Note that we can rule out Euclidean
and hyperbolic space since they are not closed. In particu-
lar, M is diffeomorphic to S

Hence the Poincaré conjecture can be formulated as
saying that any closed, simply-connected three-manifold
has an Einstein metric. More generally, Thurston’s geo-
metrization conjecture says that every closed three-mani-
fold can be decomposed into pieces in some specified
way so that each piece admits a locally homogeneous metric,
a concept more general than that of a metric with constant
sectional curvature.

Hamilton’s Ricci flow

In the 1980s and 1990s, Hamilton developed a program to
prove geometrization, beginning with a paper’, where he
showed that if a 3-manifold has a metric with positive
Riccei curvature then it has an Einstein metric. By positive
Ricci curvature we mean that if pe M and U e T,M is
non-zero, then Ric(U, U) > 0.

Hamilton’s approach was to start with a given metric g
and consider the one-parameter family of Riemannian
metrics g(z) satisfying the Ricci flow equation

dg

o =—-2Ric(r), g0 =g, (D
1

where Ric(z) is the Ricci curvature of the metric g(#).

To get a feeling for the analytical properties of this
equation, we first consider the simpler case of the heat
equation which governs the diffusion of heat in an iso-
lated body. The heat equation is

a_u =Au.

ot
The temperature in an isolated body becomes uniform as
time progresses. Further, the minimum temperature of the
isolated body increases (and the maximum temperature
decreases) with time. This latter property is called a
maximum principle.

To see the relation of the Ricci flow with the heat equa-
tion, we use special local coordinates called harmonic co-
ordinates (i.e. coordinates {x;} such that the functions x;
are harmonic). We can find such coordinates around any
point in a Riemannian manifold M. In these coordinates
we have
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. 1
Ric; = _EAgij +Q(g,0¢),

where Q is an expression involving g and the first partial
derivatives of g and R;; = Ric(¢;, &)). %,

Hence the Ricci flow resembles the heat flow —- =
Ag;; leading to the hope that the metric becomes symmet-
ric (more precisely, the Ricci curvature becomes con-
stant) as time progresses. However, there is an extra term
Q(g, 9g) of lower order. Such a term is called the reaction
term and equations of this form are known as reaction—
diffusion equation. In order to understand such an equa-
tion, one needs to understand both the nature of the reac-
tion term and conditions that govern whether the reaction
or the diffusion terms dominate.

Let us consider some examples: If g is the induced
metric on the sphere S of radius 1, then g)y=(1-4ngis
the solution to eq. (1). Note that the radius of (S3, g(n) is
J1—4r and the sectional curvatures are 1—1T' As t%%,
these curvatures blow-up.

More generally, if g(¢) is an Einstein metric the Ricci
flow simply rescales the metric. In fact, if Ric = ag, then
g =(1-2arg satisfies eq. (1). Note that (M, g(r))
shrinks, expands or remains stationary depending on
whethera > 0,a <0 ora=20.

On the other hand, if the metric is fixed up to rescaling
by the Ricci flow, then it is an Einstein metric.

Let (M) X M,, g1 & g>) be a product Riemannian mani-
fold. Then the Ricci flow beginning at g, @ g, is of the
form g(r) = g.1(r) ® g.(r), where g1(r) and g,(r) are the
flows on M, and M, beginning with g; and g,. Ricci flow
preserves product structure. In particular, the flow begin-
ning with the standard product metric go @ g, on S* x R
is g()=(1-20g,® g1, i.c. §? shrinks while the R direc-
tion does not change. This example is crucial for under-
standing regions of high curvature along the Ricci flow.

We now consider some analytical properties of the
Ricci flow. One of the first results proved by Hamilton
was that, given any initial metric g(0) on a smooth mani-
fold M, the Ricci flow equation has a solution on some
time interval [0, €). Furthermore, this solution is unique.
It follows that a solution to the equation with initial metric
g(0) exists on some maximal interval [0, T), with T either
finite or infinite and is unique on this interval. Further, if
T is finite then the maximum of the absolute value of the
sectional curvatures becomes large as we approach 7.

The main idea of Hamilton’s program is to evolve an
arbitrary initial metric on a closed simply-connected three-
manifold along the Ricci flow and hope that the resulting
metric converges, up to rescaling, to an Einstein metric.
Hamilton showed that this does happen when g has posi-
tive Ricci curvature.

It is convenient to analyse separately the cases where
the maximal interval of existence [0, T) is finite and infi-
nite. It turns out, as we explain later, that if the manifold
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is simply-connected, then this time-interval is finite. In
particular, the curvature blows-up in finite time on certain
parts of the manifold.

The central issue in Hamilton’s program was to under-
stand, topologically and geometrically, parts of the mani-
fold where curvature blows-up along the Ricci flow.

Curvature pinching

The first major steps in understanding the geometry near
points of large sectional curvature were due to Hamilton
and Ivey, using maximum principles.

In the simple case of a heat equation we have the maxi-
mum principle which implies that if the temperature is
initially greater than a constant o at all points in the
manifold, then this continues to hold for all subsequent
times. In the case of the Ricci flow, we have a similar
maximum principle for the scalar curvature. This is because
the scalar curvature also satisfies a reaction—diffusion
equation with the reaction term positive. As a conse-
quence, the scalar curvature evolving along the Ricci
flow is larger than the solution to the heat equation with
the same initial conditions. In particular, we obtain the
important conclusion that scalar curvature R is bounded
below along the Ricci flow.

Hamilton also developed a maximum principle for ten-
sors. Using this, Hamilton and Ivey independently ob-
tained an inequality for the curvature using this maximum
principle, which we mention and use in the next section.
A consequence of the Hamilton-Ivey inequality is that if
for a point p € M, the maximum of the absolute values
IK(p, &)| goes to infinity, then R(p) — oo.

All these maximum principles amount to showing and
using positivity properties of the reaction term.

Blow-up and convergence of Riemannian
manifolds

To study points of high curvature, we use a version of a
classical technique in PDEs called blow-up analysis.
Namely, given a closed Riemannian manifold (M, g), let
kmax = IK(x, &)1 be the maximum of the absolute values of
sectional curvatures. We rescale g to ky.xg to get a mani-
fold with bounded sectional curvature, which is necessary
for considering limiting manifolds as below.

We rescale the manifolds (M, g(¢r)) as t = T as above.
This gives a sequence of manifolds with curvature uni-
formly bounded. One can study such a sequence by con-
sidering limiting manifolds, i.e. limits (in the sense of the
next paragraph) of subsequences of the given sequence of
manifolds, provided that such limiting manifolds exist.

Let (M;, g;) be a sequence of Riemannian n-manifolds
and (N, h) be another Riemannian n-manifold. Let x; €
M; and xe N. We say that (M, g, x;) converges to
(N, h, x) if for any € > 0, we can find k large enough and
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a diffeomorphism f from the ball B, of radius 1/k in M, to
the ball B of radius 1/k in N with f(x) =y, so that for
p.ge By 1-¢e< W < 1+¢ We shall call such
a map an almost isomeI;’r%/. Note that our notion of limits
depends on basepoints x; € M,.

As shown by the example in Figure 3, it is necessary
that the curvatures of (M;, g;) are bounded.

However, even a sequence of manifolds with bounded
curvature need not have limiting manifolds (of the same
dimension), as the manifolds may collapse to lower di-
mensions. For example, let M; = Sx S! be the two-torus,
g = i’lgo ® go and p; = (p, q), where g, is the usual metric
on the circle. Observe that (M;, g;) is the torus with the
product metric obtained by viewing the torus as a product
of a circle of radius 1/i with a circle of radius 1. In this
case the sectional curvature of (M;, g;) is zero for any i.
On the other hand, the limit of this sequence of metrics is
the degenerate metric 0 @ go. Hence the limit of the Rie-
mannian manifolds (in the appropriate sense) is a circle
(see Figure 4).

If no collapsing takes place, it is known that we do have
limiting manifolds (which are Riemannian manifolds of
the same dimension). One of the major results of Perel-
man was that in the situation of the blow-up limit of the
previous section, i.e. when the metrics g; arise as rescal-
ings at certain times along the Ricci flow, collapsing does
not occur.

Further, the Hamilton-Ivey pinching estimate implies
that the limiting manifold is non-negatively curved. This,
together with Perelman’s non-collapsing result shows that
the Ricci flow for the limiting manifold is a so-called k-
solution. Perelman proved that points in a k-solution have
canonical neighbourhoods (which we explain later in the
article). Furthermore, he proved a technical result giving
a bound on the derivative of curvature for k-solutions,
which was crucial in understanding the behaviour near
points of high (but not necessarily maximum) curvature.

04 A

Figure 3. A sequence without bounded curvature with the limit
singular.

SHOC

Figure 4. An example of collapsing.
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Perelman’s canonical neighbourhoods

By considering limiting manifolds as above, it follows
that small neighbourhoods of the points of maximum cur-
vature are close to being ‘standard’. However, this procedure
does not work if we want to understand points with high
curvature which are not the maximal curvature points.
The problem is that rescaling with respect to these points
does not give metrics with curvature bounded independent
of i.

A surprising and remarkable result of Perelman, which
overcomes this difficulty and can be considered to be one
of the central results in his proofs, is the canonical
neighbourhood theorem. This says that if M is simply-
connected, either M is diffeomorphic to S’ or every point
of high scalar curvature has a canonical neighbourhood
which is an €-neck or an g-cap. An €-neck is a Riemannian
manifold almost isometric to the product of a sphere of
radius € and an interval of length 1/¢. An €-cap is diffeo-
morphic to a ball and satisfies certain other geometric
conditions.

This result is surprising in many ways. Normally, by
the kind of rescaling argument sketched above, we can
study a neighbourhood of a point of maximal curvature.
However, one expects that near points of high (but not
maximal) curvature, there are nearby points where the
curvature is much higher. This means that the curvature
can be fractal-like, and the resulting system has behav-
iour at many scales (as happens with complex systems).

To study a neighbourhood of a point of high scalar
curvature, Perelman used the bounds on the derivative of
the curvature of standard solutions in an ingenious induc-
tive argument (which proceeds by contradiction) to show
that the curvature of the appropriate rescaled metric is
bounded near the point. After refining this using geometric
arguments (based on so-called Alexandrov spaces),
Perelman showed that one can construct blow-up limits at
points of high (but not necessarily maximum) curvature.
Hence the results mentioned in the previous section can
be used to construct canonical neighbourhoods for all
points of high curvature.

Ricci flow with surgery

The canonical neighbourhood theorem allows one to un-
derstand regions where the curvature becomes large.
However, if the curvature remains bounded on some re-
gion of the manifold, we cannot deduce much about the
topology of the manifold. One would like to continue the
Ricci flow in regions with bounded curvature, while us-
ing the canonical neighbourhood theorem to study re-
gions with high curvature. This is accomplished by a
process known as Ricci flow with surgery. This process
involves modifying the manifold, geometrically and topo-
logically, at regions of high curvature at a time close to 7.
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Neck with cap

Surgered manifold

Figure 6. Surgery.

The resulting manifold has bounds on curvature that al-
low the process to continue beyond time 7.

In case T=oo, there is no need to perform surgery.
Hence it suffices to consider the case where 7' < oo,

Consider the subset Q, of M where the scalar curvature
is bounded by a large number p for all r e [0, T), i.e. let
Qy={xe MIR(x, 1) <p for all ¢}. We choose p large
enough that points of scalar curvature greater than p have
a canonical neighbourhood.

For a time ¢ close to 7, the canonical neighbourhood
theorem holds for the complement N of the interior of €.
Thus, every point in this complement has a neighbourhood
that is a neck, cap or diffeomorphic to a sphere (if the initial
manifold is simply-connected). Putting these neighbour-
hoods together, we get either a sphere or a manifold dif-
feomorphic to S2 % [-1, 1] (which is a union of several
necks), which may have a cap attached at one or both
ends. Topologically in each of these cases we obtain a
sphere, a ball, or 52 x [-1, 1]. It follows in particular that
the boundary of €, consists of two spheres.

If Q, is empty, then however large we choose p, in
other words if the curvature blows up on the entire mani-
fold M, then the above implies that M is diffeomorphic to
S’ We then replace M by the empty manifold.
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Sequences of manifolds and their blow-up limits.

Otherwise, we remove the interior of the set N=M — Q,
and we attach balls to each of the boundary spheres of Q,
to get a Riemannian manifold. This operation is called
surgery.

Now we continue to evolve the manifold, which in
general has several components by the Ricci flow. Repeat-
ing the above procedure for each of the components, we
can inductively define Ricci flow with surgery (see Fig-
ure 0).

Note that if the curvature becomes high at all points in
all components of M, then the manifold after surgery is
empty. In this case, we say that the manifold has become
extinct. One can deduce from the canonical neighbour-
hood theorem that in this case, the manifold just before
surgery was a collection of three spheres.

We need technical results which confirm that all the
properties that we have for the ordinary Ricci flow hold
for Ricci flow with surgery. We also need a result indi-
cating that in any finite time interval only finitely many
surgeries are required to show that Ricci flow with surgery
can be defined for all positive times. To achieve these re-
sults one needs to choose the parameter p carefully, in
general depending on the time 7.

Outline of the proof

We are now in a position to outline the proof of the Poin-
caré conjecture. Consider a simply-connected three-mani-
fold M with a Riemannian metric on it. We evolve this
using the Ricci flow with surgery.

A result of Perelman (for which a simpler and more
elegant proof was provided by Colding and Minicozzi'®)
says that if the manifold M is simply-connected, then the
Ricci flow with surgery becomes extinct in finite time.
This is proved by considering a geometric quantity called
the waist and showing that it goes to zero in finite time.

Consider Ricci flow with surgery up to the time when
it becomes extinct. If we view the process backwards
from the extinction time, we see that either spheres are
created (the opposite of extinction) or two components
are connected by a tube (the opposite of surgery). Note
that when two spheres are connected by a tube, the result
is still a sphere. As a result, when each surgery is viewed
backwards, we see spheres either being created or merged
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with other spheres. Thus at each time the manifold we see
is a collection of spheres. In particular, as manifold M we
started with is connected, it must have been a sphere.

Concluding remarks

The value of a mathematical theorem in science and en-
gineering often lies not just in its statement but in the
ideas that are developed in the course of proving the theo-
rem. In this respect, Perelman’s (and Hamilton’s) work is
rich in ideas which, when digested, may have conse-
quences in a wide range of subjects outside mathematics.
Further, techniques and ideas applicable to Ricci flow in
all dimensions may be widely applicable to complex systems,
while those special to dimension 3 may help us under-
stand when a complex system is well behaved.

Remark. An article'' concerning the proof of the Poin-
caré and geometrization conjectures has appeared re-
cently.

1. Perelman, G., The Entropy Formula for the Ricci Flow and its
Geometric Application, math.DG/0211159.

2. Perelman, G., Ricci Flow with Surgery on Three-manifolds,
math.DG/0211159.

3. Perelman, G., Finite Extinction Time for the Solutions to the Ricci
Flow on Certain Three-manifolds, math.DG/0211159.

4. Hamilton, R. S., The formation of singularities in the Ricci flow.
In Surveys in Differential Geometry, Cambridge, MA, 1993, vol.

1L, pp. 7-136.

5. Morgan, J. and Tian, G., Ricci Flow and the Poincaré Conjecture,
math.DG/0605667.

6. Kleiner, B. and Lott, J., Notes on Perelman’s Papers,
math.DG/0605667.

7. Milnor, J., Towards the Poincaré conjecture and the classification
of 3-manifolds. Not. Am. Math. Soc., 2003, 50, 1226-1233.

8. Thurston, W. P., Three-dimensional manifolds, Kleinian groups
and hyperbolic geometry. Bull. Am. Math. Soc. (N.S.), 1982, 6,
357-381.

9. Hamilton, R. S., Three-manifolds with positive Ricci curvature. J.
Differ. Geom., 1982, 17, 255-306.

10. Colding, T. H. and Minicozzi II W. P., Estimates for the extinction
time for the Ricci flow on certain 3-manifolds and a question of
Perelman. J. Am. Math. Soc., 2005, 18, 561-569.

11. Cao, H.-D. and Zhu, X.-P., A complete proof of the Poincaré
and geometrization conjectures — Application of the Hamilton—
Perelman theory of the Ricci flow. Asian J. Math., 2006, 10, 185—
492.

ACKNOWLEDGEMENTS. We thank Kalyan Mukherjea for several
helpful comments that have considerably improved the exposition, and
Gerard Besson for inspiring lectures on Perelman’s work. We also
thank Basudeb Datta, Gautham Bharali and Joseph Samuel for helpful
comments.

Received 15 August 2006; accepted 25 October 2006

1334

CURRENT SCIENCE, VOL. 91, NO. 10, 25 NOVEMBER 2006



