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Weights of evidence method, which is basically the Bayes-
ian approach in a log-linear form, using the prior
probability of occurrence of an event like landslide,
helps to find out its posterior probability based on the
relative contributions of evidential themes which are
influential in creating slope instability. In the present
study, this method has been used to find out the proba-
bility of occurrence of landslides for unique combina-
tions of evidential themes and to prepare a landslide
hazard zonation map of part of Bhagirathi valley,
Uttarakhand, within a Geographic Information System
environment, Lithology, structure, slope, slope aspect,
land use/land cover, drainage and distance to road are
the evidential themes considered in the study. The model
has been further validated using receiver operator
characteristic curve analysis, which shows an accuracy
of 84.6%.

Keywords: Geographic Information System, landslide
hazard zonation, receiver operator characteristics, weights
of evidence.

LANDSLIDES are one of the most common natural hazards
in the Himalayan terrain, causing widespread damage to
property and infrastructure, besides loss of human lives
almost every year. Appropriate management measures taken
at the right time will reduce the risk from potential landslides.
In order to prioritize the area for hazard-mitigation efforts,
it is beneficial to have a Landslide Hazard Zonation (LHZ)"
map prepared depicting the ranking of the area based on
actual and/or potential threat of slides in future. Any ap-
proach towards LHZ would require identification of the
conditions leading to slope failure, their systematic mapping
and evaluation of their relative contributions to landsliding
in the area (M. L. Siizen, unpublished).

LHZ mapping is being carried out using qualitative or
quantitative approaches. The qualitative methods essen-
tially depend on expert opinion in dividing an area into
different zones of varying landslide susceptibility. Using
an inventory of existing landslides, the expert can assess
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the hazard of the area by identifying regions of similar
geological and geomorphological conditions®. Keinholz’
and Rupke e7 al.* used geomorphological and qualitative
methods for assessing landslide hazard. Gee® suggested
the term blind-weighting method for the qualitative/semi-
quantitative approach in which the expert gives subjective
weights for the contributing factors and then integrates
these to derive a cumulative influence factor representing
the degree of hazard. Pachauri and Pant® demonstrated a
weighted landslide hazard mapping procedure in the Aglar
catchment of Himalaya. Gupta er al.” and Saha ez al.® used
parameter-weighting method for LHZ mapping in part of
Bhagirathi valley of Garhwal Himalaya. NRSA® adopted the
Analytical Hierarchy Process methodology for preparing
LHZ maps along the corridors of the major pilgrimage
routes in Uttarakhand, Uttar Pradesh and Himachal Pradesh
Himalaya. Qualitative methods are subjective and offer
less reproducibility of the output'®.

The quantitative methods in LHZ involve statistical,
geotechnical and artificial neural network methods. Geo-
technical approaches include the physical processes in-
volved in landsliding and express the hazard in the form
of safety factors.

Statistical methods are based on the mathematical rela-
tionship between the observed landslides and their con-
trolling factors. Such methods reduce the subjectivity and
ensure better reproducibility of the hazard zonation proc-
esses and their outputs. The model developed for one area
may not exactly give the same type of result in a different
area. The statistical methods involve both bivariate as well
as multivariate techniques for LHZ mapping. The commonly
used multivariate statistical methods in landslide hazard
assessment are linear regression, discriminant analysis and
logistic regression. The bivariate statistical methods utilize
the normalized landslide densities derived using the landslide
occurrence in each parameter class to arrive at the hazard
map. Information value method and weights of evidence
modelling are two common bivariate methods applied in
LHZ mapping process.

The objective of this study is to assess the utility of
weights of evidence model for landslide susceptibility
mapping in an area, which is prone to landslides. If suc-
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cessful, this model can be extended to other areas of simi-
lar geological and/or geomorphological set-up. The LHZ
map thus developed can be used for prioritizing the areas
for timely management measures. Weights of evidence
model is relatively straightforward and can handle the prob-
lem of missing data in analysis. The only requirement is
the conditional independence of input variables.

Study area and data used

The present study area is in the catchment of River Bhagi-
rathi, which is a tributary of River Ganga. Bhagirathi
originates from the Gangotri glacier, which is a place of
pilgrimage and the approach road to Gaumukh runs side
by side the Bhagirathi river. Severe landsliding happens

every year along this route, especially during the rainy
season, causing a lot of damage to property and infra-
structure, and inconvenience to the pilgrims. Keeping this
in mind, the study area is selected along the corridor of
the Rishikesh—Gaumukh road, covering about 102 sq. km.

The Indian Remote Sensing (IRS) 1D satellite data
(LISS III and PAN) of 2 January 2000 were used in the study.
The LISS IIT data were fused with PAN data for better
spatial resolution and for the preparation of landslide in-
ventory map. In addition, Survey of India topographic
maps were also used, where the mapping scale was kept
at 1:50,000. Selected fieldwork was carried out in
the year 2000. The location map of the study area, along
with the LISS III False Colour Composite is given in
Figure 1.
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Location map of the study area.
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Methodology

In the present study, weights of evidence modelling has been
applied for landslide susceptibility mapping. Weights of
evidence is a data-driven method which is basically the
Bayesian approach in a log-linear form using the prior and
posterior probability and is applied where sufficient data
are available to estimate the relative importance of eviden-
tial themes by statistical means''. This method had been
initially applied to non-spatial, quantitative, medical diagno-
sis to combine evidence from clinical diagnosis to predict
diseases. The weights of evidence model was used for
mineral potential mapping'*'> by implementing it in a
Geographic Information System (GIS) framework. This
method was also applied for LHZ mapping in Mussoorie
hills (S. V. Panickar, unpublished).

The spatial association between a set of evidential themes
and a set of known landslide locations, which are ex-
pressed as the weights of evidence, is combined with the
prior probability of occurrence of landslides to derive the
posterior probability of occurrence of landslides, provided
the evidential themes are conditionally independent with
respect to the slides'®. This method consists of reducing each
set of landslide-related factors on a map to a pattern of a
few discrete states. In its simplest form, the pattern for a
feature is binary, representing its presence or absence
within a pixel (M. L. Siizen, unpublished).

The posterior odds of the landslide (S), given the presence
or absence of any binary pattern (B; or B;) is given by:

O(S1B;))=0(S)[P(B; 1S)! P(B; SH],
and

O(S 1 B)) = O(S)[P(B, 1S)/ P(B; 1),
where O(S) is the prior odds of the slide, [P(B;1S)/
P(B;15)] is called the sufficiency ratio (LS) and
[P(B;18)/P(B;1S)] is called the necessity ratio (LN).

Bonham-Carter'' defined positive and negative weights
(wi and w;) that combine these conditional probabilities as:

w = log,[P(B; 15)/ P(B; 15)]
and

wi = log [P(B; 15)/ P(B; 1 5)].

In GIS, this method can be implemented easily. By cross-
tabulating the landslide map with the binary variable
map, the following combinations (Table 1) are possible.

From Table 1, the weights can be calculated as:

WT = loge[(Npixll(Npixl + NpixZ))/(Npix3/(Npix3 + Npix4))]’

w; = loge[(NpiXZ/(Npixl + NpixZ))/(Npix4/(Npix3 + Npix4))]~
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Table 1. Cross-tabulation of landslide and binary variable maps

Variable class binary pattern

Landslide Present Absent
Present Noixi Nopix2
Absent Noina Noina

If there are n binary patterns, then the weights can be
added to find the natural logarithm of posterior odds of
the slides as given by:

loge Oposterior (S) = Z w; + loge Oprior (S)

i=1

The prior odds of the slides (O,io:(S)) can be calculated
from the prior probability of the slides. If any map pattern
is absent, w* will be replaced by w. If data are absent or
missing for any location, then the weight is set to zero.
Combining predictor maps results in unique conditions,
which are pixels or groups of pixels with the same com-
bination of spatial evidence. For the kth (k =1, 2, ..., m)
unique condition, posterior odds of the slides are con-
verted to posterior probability (P) as

7
k
Z Wi +10ge Oprior(s)
ei=1
Pk = ” N
Zwik +loge Oprior ($)
14¢e-!

where M/f denotes the weights (w{ or w;) contributed by
binary pattern B; in the kth unique condition.

The variance of posterior probability can be estimated
based on variance of the weights'’:

sz(Pk){ ! +is2(w,»")}><&2,

Npix () i

where s*(wh) = [1/ Npix (B; nSH1+[1/ Npix (B;"S)], and
s*w) = [1/ Nopix (B, nSH]+[1/ Nopix (B; nS)H].

The contrast (w" — w") gives a useful measure of the
correlation between the variable maps and landslide oc-
currence. The contrast (C) is a useful measure to convert
continuous evidential themes into binary patterns. In
cases where the contrast does not show a clear maximum
for deciding the cut-off for this type of conversion, the
studentized contrast (Stud(C) = C/o¢) can be used'".

The weights of evidence model is generally applied using
binary evidential themes. Real-world geospatial data are
usually multi-class or continuous and the conversion of such
data into binary type will result in the loss or distortion of
valuable information. The extended weights of evidence
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model using multi-class predictor variables is preferable to
binary weights of evidence model'®. In the present study,
weights of evidence has been utilized with multi-class as
well as binary evidential themes using ArcGIS Spatial
Analyst and Arc-SDM'®,

Landslide sample locations

Though it was difficult to identify the old stabilized slides
directly on the satellite image, the locations were confirmed
through interaction with local residents during field check.
Twenty-five slides were mapped which vary in area from
0.08 to 15 ha. Most of the slides are close to the Bhagirathi
river. The centres of the raster cells representing the land-
slide locations have been converted to a point-shape file
which has been considered as the sample location input.
There are 1234 such points representing the sample locations.

Evidential themes and weights calculation

Geology: The study area falls partly under the Garhwal
Lesser Himalaya and partly under Higher Himalaya. The

Maper

Main Central Thrust (MCT) separates the two and passes
through the study area. The major lithological units in the
study area are quartzites, amphibolites, epidiorites, granitic
gneisses, migmatites and schists. In addition, minor amount
of metavolcanic rocks are also present'’.

It has been observed that landslides are common in the
area dominated by gneisses, migmatites and schists. Here,
the presence of weak planes in gneisses and schists makes
the rocks weaker and thereby facilitates slope instability. The
amphibolite and epidiorite areas show high degree of weather-
ing and have clay-rich soils. Landslides occur in such areas
also, but are not as frequent as they are in the gneiss/
migmatite/schist areas. In the quartzitic areas a few land-
slides occur where there is jointing or where there are alter-
nate layers of quartzite and slate/chlorite schist. The
geological map of the study area is given in Figure 2. The
weights have been computed for the different lithological
units and are given in Table 2.

Lineament analysis: Traces of faults/fractures which ap-
pear as linear to curvilinear features (lineaments) on the
satellite image are considered as important geological

=z

Amphiboine
Epidionte
Metavolcamnc
Granitic gneisses Migmatites, Schists
Quanxtes
Lineament
= Main Central Thrust (MCT)

—— Road

Figure 2. Geological map showing MCT and other lincaments in the study area (after Agarwal and

Gopendra Kumar)'”.
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Table 2. Weights and contrast values for lithological classes

Area No. of
Lithounit (sq. km) slide points w* W Contrast Stud (C)
Quartzite 38.2675 332 -0.3320 0.156596 -0.489 -7.5879
Amphibolite 6.4244 7 -2.4115 0.059655 -2.471 -6.5172
Epidiorite 18.6719 224 —-0.0059 0.001304 —-0.007 -0.0966
Metavolcanic 0.2913 0 -5.8698 0.002866 -5.873 -0.5873
Gneisses/migmatites/schists 38.6106 671 0.3682 -0.31267 0.6808 11.865
Table 3. Weights and contrast values for lineament density classes
Area No. of
Lineament density class (sq. km) slide points w* wo Contrast Stud (C)
I 6.0000 64 -1.95901 0.405347 -2.36436 -18.4031
11 41.0000 496 0.036909 —-0.02406 0.060971 1.0461
111 18.0000 366 0.527039 -0.15934 0.686375 10.95302
v 5.0000 151 0.928885 -0.08098 1.009869 11.52369
v 2.0000 157 1.915393 -0.11717 2.032558 23.26484
Table 4. Weights and contrast values for distance to lineament
Distance to Area No. of
lineament (m) (sq. km) slide points w* W Contrast Stud (C)
<85 29.0388 718 0.737208 —0.54565 1.282856 22.12678
> 85 72.9612 516 —0.54565 0.737208 —1.28286 -22.1268

structures which influence landslides. The surface trace
of the MCT is one of the most important lineaments in
the area. All the lineaments (with bearing on structure) have
also been mapped on satellite data using digital image
enhancement techniques.

It has been observed that major lineaments/planar struc-
tures are important factors governing the stability of slopes
in the study area. The faults, fractures and joints not only
tend to destabilize the area through deterioration of the
strength of the rocks, but also accelerate the weathering
process. The probability of landslides is higher close to
the lineaments as well as in areas where lineament density
is high. In order to accommodate these two factors, the
distance to lineament and lineament density maps have
been prepared. The lineament density values vary from zero
to 98 km per sq. km and have been classified into five
classes (Class I, < 15; Class II, 15 to 25; Class III, 25 to
35; Class IV, 35 to 50 and Class V, > 50 km/sq. km). The
estimated weights for the classified lineament density
classes are given in Table 3. The distance to lineament is
a continuous data and has to be made either categorical or
binary to be used in the model. The weights have been
determined on a cumulative incremental basis for the dis-
tance to lineament and the studentized contrast (Stud(C))
is plotted against the distance to lineament (Figure 3) to
find the cut-off to convert it into binary pattern. The
threshold is defined where the studentized contrast is
maximum and is found to be 85 m. Using this threshold,
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the distance to lineament map is converted to a binary map
and the weights have been recalculated (Table 4).

Geomorphology:  The study area falls in an active, young,
tectonic mountainous terrain. As the valley side slopes are
generally steep and extend down into the Bhagirathi river, no
piedmont zone is observed in the area. The selected area
has more or less uniform morphology, dominated by hills
and valleys. The area has uneven topography in the
Bhagirathi river valley. The Bhagirathi river in the area
flows predominantly in ENE-WSW direction and has a
constricted V-shaped valley together with steep gradient and
high run-off. This indicates a youthful geomorphological na-
ture of the region’. The elevation of the area varies from
about 1200 to 3000 m amsl.

The joints, fractures and faults are responsible for dis-
secting the hills. As the dissection increases, weathering
and soil formation processes also increase and progres-
sively facilitate instability of the slopes. Based on the dis-
section intensity, the area has been further classified into
denuadational hills of high, moderate and low dissection,
which exhibit high, medium and low lineament densities
respectively. Since the influence of lineaments on slope
destabilization has already been taken care of by the
lineament density and the distance to lineaments factors,
the geomorphological theme where the basis of major sub-
classification is ‘discontinuities’ has been omitted from the
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Table 5. Weights and contrast values for slope classes
No. of
Slope class Area (sq. km) slide points w* wo Contrast Stud (C)
1 4.3306 43 —-0.1963 0.0079 -0.2042 -1.31112
11 6.3200 59 —0.25834 0.0149 —0.2733 —2.04205
111 57.6631 617 -0.12105 0.1377 -0.2588 -4.52817
v 33.7156 515 0.237785  —0.1411 0.3789 6.536597
\Y 0.2363 0 -5.66029 0.0023 -5.6626 -0.56625
Table 6. Weights and contrast values for aspect classes
Area No. of
Aspect class (sq. km) slide points w* W Contrast Stud (C)
1 10.93375 26 -1.63028 0.09251 -1.72279 -8.68443
11 11.61125 37 -1.33708 0.090793  —1.42787 —8.54486
111 15.7775 68 —1.03439 0.111776  -1.14617 -9.1736
v 12.103125 206 0.347094  —0.0571 0.404199 5.268337
\Y 10.440625 446 1.283663  -0.34302 1.626685 27.1888
A% 11.598125 112 -0.2243 0.025421  -0.24972 —2.51224
VII 15.499375 100 —-0.6296 0.080478  -0.71008 -6.79212
VIII 14.03625 239 0.347507 -0.06814 0.415643 5.7412
60.0000 it has been found that the southern slopes are usually
/r‘ﬂ“ drier and are devoid of much vegetative cover, whereas
50.0000 .
/' the northern slopes are more moist and support better growth
B 40.0000 of vegetation. In the present study, slope aspect has also been
£ { considered as an independent variable in building the
-§ 30.0000 model.
8 k Using the DEM as input, the slope and aspect have
@ 200000 - been derived. The slope values vary from 1 to 70°. These
% 100000 have been classified into five classes (Class I, < 5°; Class
II, 5 to 15°; Class III, 15 to 35°; Class IV, 35 to 60°
0.0000 : : , . : , and Class V, >60°) to get a classified slope map. The
0 50 100 150 200 250 30 380 slope aspect values have also been grouped into eight

Distance to lineament (m)

Figure 3. Plot of cumulative incremental distance to lineament
against its studentized contrast.

model. Being an active tectonic terrain, which is continuously
undergoing uplifting, former riverbeds of Bhagirathi oc-
cur as terraces and are mapped at many places in the
study area.

Slope and slope aspect also play a crucial role in governing
the stability of the terrain in the Himalayan region. As the
slope increases, the chances of failure also increase. It has
been observed in the study area that slopes steeper than
60° usually stand out with barren-rock exposures and are
more susceptible to rock falls than landslides. At many
places in the study area, the slopes are in the range of 35—
60° and are found to be prone to landslides. This may be
because of the fact that the colluvial accumulations are
formed around 35° of slope. Slope aspect is another fac-
tor influencing the stability of a terrain. In the Himalaya,
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classes (N, NE, E, SE, S, SW, W and NW) to create a
classified aspect map. The weights estimated for the
slope and aspect classes are given in Tables 5 and 6, res-
pectively.

Drainage: The presence of streams greatly influences
the stability by toe erosion or by saturating the slope ma-
terial or both?’, In this context, the distance to drainage
and drainage density have been considered as influential
evidential themes.

The drainage pattern is sub-dendritic to sub-parallel in
the area. The drainage map has been prepared from the
toposheet and updated with the help of the merged LISS
IIT and PAN satellite data. The drainage density has been
found to vary between zero and 95 km per sq. km and has
been further classified into five classes (Class I, < 15;
Class II, 15 to 25; Class III, 25 to 35; Class IV, 35 to 50
and Class V, > 50 km/sq. km) to get a classified drainage
density map. The estimated weights for these classes are
given in Table 7. The distance to drainage theme which is
a continuous one has been converted to a binary pattern
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Table 7. Weights and contrast values for drainage density classes
Drainage Area No. of
density class (sq. km) slide points w* W Contrast Stud (C)
I 15.0000 64 —-1.0445 0.106204  -1.15071 —-8.95052
11 21.0000 56 -1.5155 0.184939  -1.70045 —12.4205
111 32.0000 462 0.1809 —0.09442 0.275301 4.661098
v 28.0000 652 0.6645 —0.43428 1.098768 19.17637
v 6.0000 0 —8.8949 0.060928  —8.95587 —0.89558

Table 8. Weights and contrast values for distance to drainage

Distance to Area No. of
drainage (m) (sq. km) slide points w* W Contrast Stud (C)
<75 54.4794 858 0.279518  —0.44241 0.721925 11.63522
> 75 47.5206 376 —0.44241 0.279518  -0.72193 -11.6352

60.0000

50.0000

/

40.0000

30.0000

20.0000

Studentized contrast

10.0000

0.0000 T T T T T T y . T
0 50 100 150 200 250 300 350 400 450 500
Distance to drainage (m)

Figure 4. Plot of cumulative incremental distance to drainage against
its studentized contrast.

with the help of the plot of studentized contrast against
distance to drainage (Figure 4). Here the threshold has
been found as 75 m. The weights have been recalculated
for this binary theme and are given in Table 8.

Land use/land cover: The land use/land cover map of
the area has been prepared with the help of IRS LISS III
data. The cell size is kept at 25 m X 25 m. Supervized
classification using maximum likelihood estimation method
has been used for classifying the LISS III data with ap-
propriate training sets for different classes. Post classifi-
cation contextual refinement has been applied on the
classified data to get the final land use/land cover map.
Dense forest, open forest, scrub, barren land and agriculture
are the land use/land cover classes in the study area.
Presence of vegetation is crucial in slope stability due
to better bonding of the slope material. Thus slopes with
dense vegetation should be less prone to the occurrence
of shallow landslides than barren slopes, while all other
factors remain constant. In order to assess the contribu-
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tion of different land use/land cover classes to slope desta-
bilization, this factor has also been taken into account.
The estimated weights for different land use/land cover
classes are given in Table 9.

Distance to road: It has been observed that many land-
slides occur close to the road. It is possible that the slope
destabilization has been caused either by the uncontrolled
or controlled blasting and widening of the roads, or by
the loss of support due to removal of material from the
lower portion of the slopes during road construction. In
order to accommodate the effect of this anthropogenic acti-
vity, distance to road has been taken as an evidential
theme. The continuous data have been converted to a binary
pattern using the plot of distance to road against the studen-
tized contrast. The cut-off is taken at 500 m where the
studentized contrast is found to be maximum (Figure 5).
The recalculated weights for the binary pattern of dis-
tance to road is given in Table 10.

Analysis and interpretation

The evidential themes can be integrated together to find
the combined influence of the different input parameter
classes. The posterior probability of each unique combi-
nation of input parameter classes can then be estimated,
provided the themes are conditionally independent with
respect to the occurrence of landslides. The evidential
themes have been combined pair-wise and the conditional
independence (CI) has been tested in each pair using the
Omnibus Test, which is the ratio of observed number of
slide points (n) to the predicted number of slide points
(T). The predicted number of slided cells can be esti-
mated as:

T= Z PkN(S)observed >
k=1
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Table 9. Weights and contrast values for land use/land cover classes
Land use/ Area No. of
land cover (sq. km) slide points w* W Contrast Stud (C)
Dense forest 24.6775 60 —-1.6080 0.2282 -1.8363 -13.8605
Open forest 50.7762 539 —0.1290 0.1130 -0.2421 -4.2018
Barren land 15.1962 239 0.2673 —0.0548 0.3221 4.4504
Scrub 5.6231 247 1.3123 -0.1679 1.4803 20.5624
Agriculture 5.1156 149 0.8920 -0.0779 0.9699 11.0079
Water 1.5194 0 -7.5215 0.0151 -7.5366 -0.7537
Table 10. Weights and contrast values for distance to road
Distance to Area No. of
road (m) (sq. km) slide points w* W Contrast Stud (C)
< 500 18.8081 853 1.3452 -0.9767 2.321906 37.47587
> 500 83.4575 381 -0.9767 1.3452 -2.32191 -37.4759
80.0000 1.000
——Stud(C)
70.0000 w 080071 T | Observed
/ \ § e Predicted
60.0000 g 08007
= 2
2 \ = 0.700
£ 50.0000 %5
8 \ 5 0.600 1
$ 40.0000 2
-g \ S 0.500
g c
g %0.0000 \ £ 0.400 ] /
@ k=
20.0000 5 0.300 4
1 g
10.0000 4 g 0.200 -
3
o
0.0000 : , . . 0.100 1
0 500 1000 1500 2000 2500 3000 0.000
Distance to road (m) 0.00 0.10 0.20 0.30 0.40
Figure 5. Plot of cumulative incremental distance to road against its Posterior probability
studentized contrast. Figure 6. Plot of observed and predicted cumulative frequencies of

where P, is the posterior probability of the kth unique
condition.

If n/T is less than 0.85, then CI is violated. CI values
for the pairs of evidential themes are given in Table 11. It
can be inferred from Table 11 that the drainage density
and lineament density themes show problem of conditional
dependency with one of the themes (distance to road) and
hence have been omitted from the final model. Thus the
final model for hazard zonation retains seven of the nine
themes (distance to drainage, distance to lineament, dis-
tance to road, lithology, slope aspect, land use/land cover
and slope). Posterior probability has been estimated for the
unique conditions resulting out of the combination of these
seven themes. This seven-parameter model has a CI ratio
of 0.87, which is above the acceptable limit of CI, indi-
cating that the model satisfies the condition of CI among
the parameters. There are 2317 unique combinations and
the posterior probability values for these unique combina-
tions vary from O to 0.34.
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landslide cells against posterior probability.

The observed and predicted cumulative frequencies of
slided cells are plotted against the posterior probability
(Figure 6). The cumulative posterior probability percent-
age values have been plotted against cumulative percent-
age of the area (Figure 7) to decide the boundary values
for classifying the posterior probability values. The slope
of the curve turns from steep to moderate and from mod-
erate to flat at the inflection points, where the posterior
probability values are 0.0088 and 0.0343 respectively. These
values have been used to classify the posterior probability
values into low, medium and high hazard classes. The re-
sultant LHZ map showing locations of the existing landslides
is given in Figure 8.

Validation

The model has been validated by comparing the calcu-
lated probability values for different cells and their actual
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Table 11. Pair-wise conditional independence test values using Omnibus Test
Distance to Distance to Distance Slope Drainage Lineament Land use/

Evidential theme drainage (m) lineament (m) toroad (m) Lithology aspect density density  land cover  Slope
Distance to drainage (m) 0.954 0.973 0.986 0.985 0.966 0.982 0.978 0.997
Distance to lineament (m) 0.954 0.895 0.977 0.996 0.931 0.848 0.996 0.994
Distance to road (m) 0.973 0.895 0.970 0.869 (0.809) (0.695) 0.857 0.979
Lithology 0.986 0.977 0.970 0.985 0.942 0.904 0.954 0.994
Slope aspect 0.985 0.996 0.869 0.985 0.928 0.915 0.864 0.992
Drainage density 0.966 0.931 (0.809) 0.942 0.928 (0.809) 0.958 0.993
Lineament density 0.982 0.848 (0.695) 0.904 0.915 (0.809) 0.948 0.991
Land use/land cover 0.978 0.996 0.857 0.954 0.864 0.958 0.948 0.987
Slope 0.997 0.994 0.979 0.994 0.992 0.993 0.991 0.987
Numbers in italics given in parentheses show violation of conditional independence.
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Figure 7. Plot of cumulative percentage of posterior probability
against cumulative percentage of the study area.

present condition. This is achieved using Receiver Operator
Characteristic (ROC) curve analysiszuz. The ROC curve
is a plot of the probability of true positive identified landslides
versus that of false positive identified landslides, as the
cut-off probability varies. Equivalently, it is a representation
of the trade-off between sensitivity and specificity. Sensi-
tivity is the probability that a slided cell is correctly clas-
sified, and is plotted on the y-axis in an ROC curve.
1-sensitivity is the false negative rate. Specificity is the
probability that a non-slided cell is correctly classified.
1-specificity is the false positive rate and is taken along the
x-axis of the curve. The area under the curve represents
the probability that the model-calculated landslide suscepti-
bility value for a randomly chosen slided cell would ex-
ceed the result for a randomly chosen non-slided cell.
Thus, the area under the ROC curve can be used as a
measure of the accuracy of the model.
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The ROC curve for the model developed is given in
Figure 9. The area under the curve is 0.846 (Table 12), which
gives an accuracy of 84.6% for the model developed using
weights of evidence. The asymptotic significance is less
than 0.05, which means that using the model to predict the
landslide is better than guessing.

Discussion and conclusion

The present study demonstrates the application of weights
of evidence modelling for landslide susceptibility mapping
in part of the Himalaya, which is prone to frequent occur-
rence of landslides. Remote sensing and GIS have been
useful in data preparation and at integration stages.

CURRENT SCIENCE, VOL. 92, NO. 5, 10 MARCH 2007
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Figure 9. Receiver operator characteristic curve of the developed

model. Diagonal segments are produced by ties.

Table 12. Area under the receiver operator characteristic curve

Area Standard error® Asymptotic significance®

0.846 0.008 0.000

Test result variable: Posterior probability. The test result variable has at
least one tie between the positive actual state group and the negative ac-
tual state group. Statistics may be biased.

*Under the nonparametric assumption.

"Null hypothesis: true area = 0.5.

Positive and negative weights and contrast values have
been calculated for various classes of parameters used in
the study. The contrast values have been used to find the
threshold value for the binary conversion of continuous
variables like distance to road, distance to drainage and
distance to lineament.

Amongst the different lithological classes, gneisses/migma-
tites/schists have maximum value for studentized contrast.
Thus the area occupied by Higher Himalayan crystallines
(gneisses/migmatites/schists) shows maximum suscepti-
bility with reference to landslides in the study area. This
can be clearly seen as one traverses along the road to Gau-
mukh. After the MCT, there is widespread occurrence of
landslides in these lithologies.

The presence of planar structural features/lineaments
greatly reduces the strength of rock-mass units and they
contribute positively in making the slopes unstable. It is
observed widely in the Himalaya that close to regional
thrusts/faults (e.g. MCT), the landsliding phenomenon is
severe. This observation is corroborated by the high values
of contrast for Class V of lineament density and for the
distance to lineament class of <85 m. The drainage density

CURRENT SCIENCE, VOL. 92, NO. 5, 10 MARCH 2007

and distance to drainage parameters also have shown
positive influence towards slope destabilization as seen
from the contrast values. Slope saturation might be the
reason for this phenomenon. Amongst the different land
use/land cover categories, scrub land area has shown highest
contrast and this area is more prone to landslides due to
lack of cohesion of slope material, as in case of dense
forest areas. Agricultural areas also shows high contrast
values. This could be because of the fact that cultivation
has been done on stabilized, old landslides, thereby giving
high positive weights in such areas.

The slope category of 35-60° (slope Class IV) and
slope aspects of south and northwest are found to be sig-
nificant contributors with respect to landslides in the study
area. The 35-60° slope category is the most unstable in the
study area, where most of the colluvial accumulations are
found around 35° slope angle. On the other hand, slopes
gentler than 30° are found to be stable in the area. It has
also been observed that steep slopes (>60°) stand out
with rock exposures and are mostly stable, provided they
are devoid of any geological discontinuities. In a major
portion of the area, the southern and northwestern aspects
receive maximum sunlight because of the predominant
ENE-WSW orientation of the main valley and conse-
quent orientations of the tributary valleys. This creates
drier slopes in these aspects and results in lesser vegeta-
tion growth. Thus these aspects tend to be unstable. An-
thropogenic interferences such as slope-cutting for the
construction of roads and other developmental activities
make the slopes unstable. The 500 m buffer area around
the road has shown maximum value for contrast and
hence attests to this observation.

The classified posterior probability map depicts 76.8%
of the total study area in the low, 17.5% in the medium
and 5.6% in the high hazard class. ROC curve analysis
has shown 84.6% accuracy for the LHZ analysis model
adopted in the present study. Thus weights of evidence
modelling can be utilized for estimating the conditional
probability of landsliding on a cell-by-cell basis for an
area, given the presence or absence of various independent
variables which influence slope stability, towards the LHZ

mapping.
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