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In this communication, we develop and analyse an in-
ventory model with the assumption that the lifetime of
the commodity is random and follows a generalized
Pareto distribution. It is also assumed that the demand
is a function of stock and the money value is subject to
inflation. Using the differential equations, the instan-
taneous state of inventory is derived. With suitable
cost consideration, the total cost function is obtained.
Minimizing total cost function, the optimal ordering
quantity and cycle length are obtained. This model is
useful in practical situations arising at places like the
food and vegetable markets, oil industry and photo-
chemical industry.
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RECENTLY, much emphasis has been given in developing
inventory models for deteriorating items with random
lifetime. Several workers have reviewed the inventory
models for deteriorating items' . In the study of inven-
tory models for deteriorating items, the lifetime of the
commodity plays a dominant role. Several researchers have
studied the inventory models with exponential lifetime
Tadikamalla® developed inventory models with gamma
distribution for deterioration. Inventory model with
Weibull distribution for the lifetime of a commodity has
also been studied®”’. Nirupama Devi® has studied the in-
ventory model with the assumption that the lifetime of a
commodity follows a two-component Weibull distribu-
tion. No serious attempt has been made to develop and
analyse inventory models with generalized Pareto distri-
bution, except the work of Srinivasa Rao et al.g, who
studied the models with the assumption that the demand
is a function of selling price or is time-dependent. They
assumed that the money value is fixed and remains constant
(without inflation). However, in deteriorating items like
food and vegetables, photographic films and electronics,
when a price increase is anticipated, then a large amount
of items may be purchased, but the money value may
change during the planning period with an inflation rate
and the demand is stock-dependent. Several researchers have
examined the inflationary effect on an inventory policy.
Buzacott™ developed an approach of modelling inflation
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by assuming a constant inflation rate. Misra'' proposed
an inflation model for the economic order quantity (EOQ),
in which the time value of money and different inflation
rates were considered. Mangiamely et al.'* have reviewed
and classified the models. Brahmbhatt' developed an EOQ
model under a variable inflation rate. Hwang and Sohn'*
developed a deterministic inventory model for items that
deteriorate continuously and follow an exponential distri-
bution when a price increase is anticipated. Gupta and
Vrat' developed a multi-item inventory model with a re-
source constraint system under a variable inflation rate.
They have introduced the stock-dependent phenomenon
in modelling inventory systems assuming the consumption
rate to be a function of the order quality. Baker and
Urban'®, and Mandall and Phaujdhari’’ have assumed
nonlinear functions of the on-hand inventory. These au-
thors have not considered the perishability of the item and
the possibility of shortages in developing the inventory
models. Padmanabhan and Vrat'® developed an EOQ
model for items having stock-dependent demand and ex-
ponential decay. Datta and Pal" considered the demand
rate a linear function of the on-hand inventory in develop-
ing the inventory models for deteriorating items.

In this communication we develop and analyse an inven-
tory model with the assumption that the lifetime of a
commodity is random and follows a generalized Pareto
distribution and the demand is stock-dependent, having
constant rate of inflation. The generalized Pareto distribu-
tion is extensively used in the analysis of extreme events,
especially in reliability studies, when robustness is re-
quired against heavier time or lighter time alternatives to
an exponential distribution. Using differential equations
the instantaneous state of inventory is derived. With suit-
able cost consideration, the total cost function is obtained
and minimized with respect to the ordering quantity and
cycle length. The sensitivity of the model has also been
studied.

The following assumptions and notations have been
used: (i) Demand rate is known and constant; (ii) Replen-
ishment is instantaneous; (iii) Lead time is zero. (iv)
Shortages are not allowed; (v) The length of one cycle is
T; (vi) Inflation rate is a constant, say k (Rs/unit time);
(vii) The inventory holding cost per unit per unit time is h;
(viii) Deteriorated item is lost, and (ix) Length of plan-
ning horizon is H.

The lifetime of a commodity is random and follows a
generalized Pareto distribution having probability density
function of the form

—e c#0.
Then the instantaneous rate of deterioration h(¢) is
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h(t) = — =
(1-[ f(u)du]
0

a-ct’
Further, demand rate A is considered stock-dependent, i.e.
it depends on the ordering size and is of the form
A= a+ pQ, where ¢, £ are constants and positive, and Q
the ordering quantity in one cycle.

The cost of placing an order at time ¢t is A(t), which is
time-dependent and is of the form A(t) = Age™, where A,
is the cost of placing an order at time zero.

The cost of one unit at time t is C(t), which is also a
function of time, i.e. C(f) = Cye", where C, is the cost price
of one unit at time zero.

Let I(t) be the inventory level of the system at time ¢t
(0 <t < T). Then the differential equation of the instanta-
neous state of I(t) over the cycle length T is

%I(t)JrI(t)h(t) =-1, 0<t<T (D

with initial condition I(T) = 0.
Solving the differential equation the on-hand inventory
at time ¢ is obtained as

I(t) = &[(a —cT)Y Y a-ct)'C —(a-cb),

0<t<T. 2)

Let the horizon (H) consist of m cycles of length T, where
m is an integer. For the number of replenishments to be
made during the period H, since T is a constant interval
of time between replenishments, we can assume H = mT.
Since the total system cost during the planning period
H is the sum of the unit cost, inventory holding cost and
replenishment cost, the total system cost can be expressed as

K(T,Q=C+(C,+C, (3)
where C is the cost of the units, Cy, the inventory holding
cost and C, the replenishment cost in the interval (0, H).

Cost of the units in (0, H) is obtained as

C=Q[C(0)+C(T)+C(T)+--+C(m-1T]

|
= E—— 4
O{ri J (4)

Inventory holding cost in (0, H) is obtained as

n=0 0

m— T
C, = hZ:lC(nT)UI(nT +t)dt1 . (5)
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From eq. (2), I(nT + t) can be written as

I(nT +1t) = li[(a — T Y a-ct)’  —(a-c)l.  (6)
—C

Substituting eq. (6) in eq. (5), the inventory holding cost

C,, is obtained as

m-1
C, =hY C(nT)

n=0

A
x { j ~l(a-cT)(@a-ct)'* —(a- ct)]dtl :
Ol—c

On simplification

kH
C%::Ath{Eﬁr—l}
e

T
X U%[(a—cT)lUc(a—ct)llc—(a—Cf)]df]- (7)
c1-c

Replenishment cost in (0, H) is obtained as

C. = A0) + A(T) + AQT) + - + Al(m — )T]

kH —
= A {e—l} . (8)

|

Substituting eqs (3), (7) and (8) in eq. (3), the total sys-
tem cost over (0, H) can be obtained as

_kH_l

K(T,Q)=| 2

ekl —1

HAO +QC, + AhC,

T
x ITL{m—cnl”%a—af“—upfomﬂ}.
—-C
L0

)

Substituting the quadratic approximation of e7 =1+ kT +
(kT)*/2 in eq. (9), the total system cost is obtained as:

KH
-1

K(T,Q)= eikTQ

kT+7( )

AhG,
Ay +QC, + 1

T
x{IHa—CTf1“(a—COUC—(a—COkH}}.

0
(10)
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Substituting 4 = « + SQ in eq. (10), K(T, Q) can be ob-
tained as:

k+1
akt

K(T,Q) =

a+ﬁQj

1-c¢

k;T2 {AO +QC, + hCO[

kT +

x IKa—chlm—(a—aﬂdﬂ. (11)
0

The initial inventory after replenishment is

[allc(a _CT)I—I/C —CI]
C

10-0--—

_ /{a”c(a—cT)ll/C —a} '
1-c¢

(12)

Substituting 4 = & + SQ in eq. (12) we get

aD

= a-pDy’

(13)

where D = {

al/c(a _CT)I—I/C —a
1-¢ '

Substituting eq. (13) in eq. (11) and expanding and ne-
glecting higher powers of 1/a in (a — ct)'™, the total sys-
tem cost is obtained as

aC, {T +i+ AT’ L d+od+ 207" }

2a  6d? 244
i+ 1+o7? Lo+ 20)T*
2 6a’ 244°

X 9 Ay +

1—ﬂ|:T+

3
Z;+0+2?T4+a+2@a:3@T5
6a  24a 120a

2 3 2
1-p T+17+O+QT +O+Qﬂ+£QT
2a 6a 24a

T? +

+hCyax

(14)
For obtaining the optimal cycle length of the system, dif-
ferentiate eq. (14) with respect to T and equate to zero.

This gives
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Table 1. Optimal values of cycle length, total system cost and ordering quantity

a c k Ag o h C p H T* TC Q*
105 0.3 0.8 5 170 0.2 1 1 1 0.16601 311.8449 33.8719
106 0.16602 311.842 33.8729
108 0.16603 311.837 33.8748
106 0.2 0.8 5 170 0.2 1 1 1 0.16602 311.84255 33.87291
0.3 0.16602 311.84257 33.87290
0.4 0.16602 311.84258 33.87288
105 0.3 0.81 5 170 0.2 1 1 1 0.16638 312.71 33.9622
0.82 0.16675 313.58 34.05
0.83 0.16712 314.44 34.143
105 0.3 0.8 6 170 0.2 1 1 1 0.17876 319.4399 37.042
7 0.19011 326.507 39.9509
8 0.20038 333.156 42.65304
105 0.3 0.8 5 171 0.2 1 1 1 0.16561 313.446 33.97318
172 0.16522 315.0474 34.07417
173 0.16483 316.647 34.1748
105 0.3 0.8 5 170 0.3 1 1 1 0.16207 314.037 32.91035
0.4 0.15839 316.1722 32.0216
0.5 0.1549 318.25 31.197
105 0.3 0.8 5 170 0.2 2 1 1 0.12404 578.256 24.089
3 0.1039 838.051 19.725
4 0.091 1094.4 17.1194
105 0.3 0.8 5 170 0.2 1 2 1 0.1034 356.302 22.1759
3 0.0791 390.803 17.66
4 0.065 420.593 15.115
105 -6 0.8 5 170 0.2 1 1 1 0.16601 311.8449 33.87259
106 0.16602 311.84173 33.87359
108 0.16603 311.83704 33.87548
105 -5 0.8 5 170 0.2 1 1 1 0.16601 311.84427 33.87248
—4 0.16601 311.84441 33.87237
-3 0.16601 311.84445 33.87226
105 -6 0.81 5 170 0.2 1 1 1 0.16638 312.7142 33.96289
0.82 0.16675 313.5824 34.05355
0.83 0.16712 314.44874 34.14458
105 -6 0.8 6 170 0.2 1 1 1 0.17876 319.4389 37.04302
7 0.19012 326.5061 39.9519
8 0.2003 333.155 42.65406
105 -6 0.8 5 171 0.2 1 1 1 0.16562 313.4456 33.9738
172 0.16522 315.046 34.0748
173 0.16483 316.64687 34.1755
105 -6 0.8 5 170 0.3 1 1 1 0.16207 314.0366 32.9109
0.4 0.15839 316.1715 32.02218
0.5 0.15495 318.25289 31.19777
105 -6 0.8 5 170 0.2 2 1 1 0.12404 578.255 24.089
3 0.10392 838.05021 19.72611
4 0.09143 1094.42 17.1146
105 -6 0.8 5 170 0.2 1 2 1 0.10341 356.30195 22.17604
3 0.07795 390.802 17.66693
4 0.06557 420.5929 15.11535
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(15)

Solving eqs (13)—(15) iteratively using numerical meth-
ods for given values of a, c, k, Ay, h, &, £ and C, we ob-
tain the optimal values of Q%*, total system cost TC, and
cycle length T* (Table 1).

From Table 1 it is observed that when the scale pa-
rameter a increases, the optimal cycle length T* and the
optimal ordering quantity Q* also increase, and the total
system cost TC decreases, for other costs and parameters
fixed. When the shape parameter ¢ increases, TC increases
and Q* decreases, for other costs and parameters fixed.
When the inflation rate k increases, T*, Q* and TC also
increase, when other costs and parameters remain con-
stant. When the cost of placing an order (Aq) increases,
then T*, Q* and TC also increase, when other costs and
parameters are fixed. When « increases, Q* and TC in-
crease and T* decreases, for other costs and parameters
fixed. When the holding cost h increases, T* and Q* de-
crease, while TC increase, for other costs and parameters
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fixed. When the cost of the unit C increases, T* and Q*
decrease while TC increases, for other costs and parame-
ters fixed. When £ increases, T* and Q* decrease, while
TC increases, for other costs and parameters fixed.

The model developed is useful for analysing situations
at several inventory control systems arising at places like
food and vegetable markets, oil and photochemical indus-
tries.
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