HISTORICAL NOTE

Einstein, ‘parachor’ and molecular volume: Some history and a

suggestion

S. N. Balasubrahmanyam
Einstein’s first paper

In 2002, the Royal Society commemo-
rated the centenary of young Einstein’s
first scientific paper by publishing J. N.
Murrell’s analytical comments' on ‘an
extraordinarily advanced paper for a re-
cent graduate’. At the end of his com-
ments, Murrell makes an interesting
connection between certain additive con-
stants calculated by Einstein and ‘para-
chor equivalents’? that were to be descri-
bed some two decades after Einstein’s
paper.

As a part of his examination of the na-
ture of intermolecular forces, Einstein,
started his paper titled, ‘Folgerungen aus
den Capillarititserscheinungen’®, with an
analysis of the thermodynamics of liquid
surfaces: ‘... experiments reveal that
since surface tension y varies linearly
with temperature, the energy needed to
build a surface unit is independent of
temperature. Hence the specific heat of
the surface is zero. The energy of the
surface can therefore be considered as a
potential energy, and this energy can be
expressed by the function:

yT(dy/dT).

This function is a better unit with which
to analyse “stoichiometric aspects” than
7.

I now give excerpts from Murrell’s
paper (co-authored with N. Grobert):
‘Einstein is interested in the possibility
that the surface energy can be expressed
by additive contributions from the atoms
making up the molecules in the surface.
This was not the original idea, because
atom-additive contributions to /M, where
M is the molecular mass had been derived
earlier and regularities seen in the sur-
face tensions of liquids from molecules
related within a homologous series’.

In Einstein’s own words: ‘1 started
from the simple idea of attractive forces
amongst the molecules, and I test the
consequences experimentally. 1 took
gravitational forces as analogues. There-
fore, the relative potential of two mole-
cules is:
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P =P, —cic0(r).

In this case, c is a characteristic constant
of the molecule and ¢(r) is a function of
the distance [between] the molecules,
taken as independent of the nature of the
molecule’.

Murrell comments: ‘We can see im-
mediately the limitations of this model
because there are no angular variables, to
allow for electrostatic contributions to
the potential, for example’. However,
there have been many subsequent models
that do no better, employing, for exam-
ple, a Lennard-Jones functional form for
the potential®. Indeed, the analysis of gas
imperfections has commonly ignored
angular variables by considering only
spherically averaged potentials. . . .

‘The total potential is a sum of all pair
interactions, and if all the molecules are
the same, Einstein could write

P =P, - 1T, Thh(n).

Einstein also assumed that the potential
of the molecular forces is the same, as if
the matter were to be evenly distributed
in space, and says, “This, however, is an
assumption which we can expect to be
only approximately true”.

‘The double sum is replaced by a dou-
ble integral over all space, with a multi-
plying factor that is the number of mole-
cules per unit volume, or the reciprocal
of this, the molecular volume V’ [empha-
sis mine]. Murrell continues, “This would
be a very poor approximation because
molecules are kept apart at short dis-
tances by a repulsive branch of the po-
tential, and any model in which the
distribution of matter is assumed to be
uniform would greatly overestimate the
attractive forces.

‘To introduce stoichiometric proper-
ties Einstein expresses the constant c as a
sum of constants ¢, one for each of the
atoms a in the molecule:

P = Po = (X0 C1)(ZpC2p) Pralr).

‘This does not introduce angular vari-
ables either. He could have been much

closer to a popular potential used today if
he had written for a pair of molecules:

P=P,- (2, Zﬂclaczﬂ)¢aﬂ(raﬂ)’

which is a sum of atom-atom potentials.
This model does introduce non-central
terms [through the variability of r] into
the intermolecular potential. . .>.

‘Einstein defines an integral (K') of the
potential taken over a surface layer and
then comes to the formula:

o0 = VI(y- TpAD)VK 12,

Einstein goes on to say, “Since it is pos-
sible to calculate the unit of the boiling
temperature (for most materials) accord-
ing to R. Schiff’s observations, we now
have many tools to determine c,. I took
all the information from a book about
General Chemistry by W. Ostwald”®. He
does not specify further this information,
but the assumption is that it is values of
the surface tension y, the molecular vol-
ume V and the boiling point T that go
into the equation. As K’ is unknown, the
unit for ¢, was chosen arbitrarily. He
used a least squares method for optimiz-
ing the ¢, parameters, and from a series
of hydrocarbons [and oxygenated com-
pounds], he obtained the values:

cy = —1.6; ¢ =55.0, cg = 46.8,

using data on 17 compounds in the least
squares analysis.’

Table 1 provides illustrative values for
two examples taken from Murrell and
Grobert’s paper.

Einstein then examined the data for a
series of 24 halogenated compounds (e.g.
chlorobenzene, ethyl bromide, allyl io-

Table 1. lllustrative summed c, values
obtained by Einstein
Fitted Observed
Compound 2aCa 2aCa
Formic acid HCHO 140 145
Carvol C,(H..O 587 574
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dide, etc.) and obtained the ‘less accu-
rate’ values for the halogen parameters:

ca = 60; cg; = 152; ¢1 = 198.

He then comments: ‘I have the impres-
sion that there are greater deviations
(from the theoretical values) for sub-
stances exhibiting a relatively large mo-
lecular mass and a small molecular
volume’. In a concluding statement he
says, ‘It is noteworthy that the constants
cq in general increase with increasing
atomic weight, but not always propor-
tionally. . . the introduction of the func-
tion ¢(r), which should be independent
of the nature of the atoms, and the substi-
tution of the sums by integrals are both
approximations. In fact, our theory does
not apply for substances exhibiting small
molecular volumes. . .’.

Murrell sees a connection to the para-
chor in Einstein’s work as a young scien-
tist presenting his very first paper: .
it was an extraordinarily advanced paper
for a recent graduate . . . The idea behind
a stoichiometric analysis of surface ten-
sion goes back to the work of Schiff, and
this was well discussed in Ostwald’s
book, but to suppose that one could ob-
tain some information about intermo-
lecular potentials by such an analysis is
probably Einstein’s own idea. It is inter-
esting that the stoichiometric analysis of
surface tension and its interpretation
through molecular structure became very
popular from the work on the parachor, a
quantity introduced by Sugden and oth-
ers in the 1920’s... The parachor was
subjected to a large number of analyses
and interpretations in subsequent years,
but the subject died a rapid death in the
1940s’. Not quite, as we shall see!

Earlier idea of the additivity of
molecular volumes

Einstein’s effort to express the constant ¢
for a molecule (which implies molar vol-
ume) as a sum of constants ¢, one for
each of the atoms a in the molecule, has
a form of precedence from about the
middle of the 19th century. Kopp”*® had
demonstrated that molecular (or molar)
volume, i.e. the volume occupied by a
mole of liquid shows marked additivity.
He noted that molar volumes of organic
compounds at their respective boiling
points® were, to a great extent, additive
functions of the volume equivalents of

their constituent elements. Isomeric
compounds of similar constitution, e.g.
methyl propionate, ethyl acetate and pro-
pyl formate (all with empirical formula
C4HgO,) have almost identical molar
volumes at their boiling temperatures. In
various homologous series there is a con-
stant difference of ~22 ml for each CH,
group. Kopp’s original list of volume
equivalents which features different val-
ues for the constitutive factors for oxy-
gen in different chemical combinations,
has seen additions and modifications
from the later work of Lossen and Le
Bas®*®). Examples are given in Table 2.

The ‘parachor’ concept

Fast forward to 1923: Everyone may ex-
pect both density and surface tension of
liquids to change inversely (lessen) with
temperature, maintaining proportionality
of some kind. In 1923, Macleod" proposed,
on entirely empirical grounds, what has
always been described as a remarkably
simple expression for the estimation of
the surface tension':

7=K(p—pv)

where pp and py are respectively, the
density of a liquid and of its vapour in
equilibrium with it at a given tempera-
ture, y the surface tension at the same
temperature and K a constant characteris-
tic of the liquid. The equation is obeyed
with considerable accuracy by many liq-
uids over a wide range of temperature up
to the critical point®™. It has been
described as a fundamental discovery
that the surface tension of a liquid at any
temperature is in a constant ratio to the
fourth power of the difference of the
orthobaric densities of liquid and vapour
measured at the same temperature. To
quote freely from the classic treatise of
Samuel Glasstone®: ‘According to J. van
der Waals, the surface tension of a liquid
at temperature T should be related to the
critical temperature T, by an equation of
the form:

7= -T/1)"

where n is a universal constant, and
depends on the critical constants of the
liquid’. This equation has been verified
for a number of organic compounds and
n was found to be very close to 1.2 (refs
2b, 12). The E6tvés equation, a statement
on the nature of the (inverse) co-
variation of density and surface tension
of liquids with temperature®’, may be
written as:

7 (M/p)*"? = kit - 1),

where p is the density of the liquid and
M its molecular weight. Katayama® pro-
posed a modification by which p is re-
placed by p— o/, where ¢ is the density of
the vapour at the same temperature:

¥ Mip—pY? = KT~ T)
= kT.(1 - (T/T.)),

the absolute temperature difference T.— T
being the same as t.—t. This equation
holds quite accurately for normal liquids
at temperatures much nearer to the criti-
cal value, than does the original form of
Edtvés. By combining the van der Waals
and the Katayama expressions, and as-
suming n to be 1.2, as found experimen-
tally, it follows that

rHip-p) = C,

where C is a constant for each substance.
[This relationship is a rewritten form of
the Macleod equation.]

‘The remarkable constancy of the
quantity ¥4 1(p- p) over a large tem-
perature range would, however, appear to
imply something more fundamental’.
Could that ‘something’ be chemical
structure?

Sugden decomposed C into a molecu-
lar weight component (M) and a new
component P, which he called ‘para-
chor' 5

M = [Pl(o - pv)/M.

Table 2. Volume equivalents of elements considered by Bayliss

Atom Kopp Le Bas Atom Kopp Le Bas
Hydrogen 55 3.7 lodine 375 37.0
Carbon 11.0 14.8 Oxygen (—0-) 7.8 7.4
Chlorine 22.8 221 Oxygen (0O=) 12.2 12.0
Bromine 27.8 27.0 Sulphur 22.6
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He rearranged this expression into a form
where, since py was much smaller than
oL away from the critical point, the dif-
ference (pv — pr) could be replaced by d,
the density of the liquid at the tempera-
ture at which y was measured:

[P1=y* d ' M=X[P].

This expression was seen as implying
that parachor is a number that represents
the molar volume V,, of a substance when
its temperature is such that its surface
tension is unity. From data on over 600
substances of variegated types, Sugden
evolved ‘parachor equivalents’ (P; in the
equation above) for atomic and structural
units (e.g. double bonds). That parachor,
together with certain constitutive factors,
is largely additive was demonstrated at a
time when trying to discover additivities
among parameters in molecular proper-
ties was near centre stage. [Discovering a
new additivity principle appeared espe-
cially significant after the discovery of
the additivity, for example, of molar heat
capacities® or molar magnetic suscepti-
bilities; Pascal®™.] Following earlier work
on molar volumes, Sugden®® also showed
that the parachor was actually 0.77 times
the molar volume at the critical tempera-
ture [[P]/V.=0.77], presumably on the
basis that it actually had the dimensions
of volume. [Getrnan7b comments that
parachor was a refinement of Kopp’s
original finding of the additivity of molar
volumes.]

During the next three decades parachor
studies were seen as useful in some early
applications to the solution of problems
of chemical constitution®. Noteworthy
among these is a ‘straight line mixture
law’ by Hammick and Andrew', to hold
for solutions in ‘normal’ liquids enabling
parachors of substances that either melted
high or decomposed before melting to be
calculated. A ‘mean parachor’ [P], was
calculated from the equation:

[Pl = My, 7*/dn,

in a manner reminiscent of the calcula-
tion of molar refraction of a solute®
and its parachor evaluated using the rela-
tion:

[P]m = X[P]solu[e + (1 - X)[P]solven['

The method was thought to be of great
practical importance, but its legitimacy
appears questionable now.
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In 1953, Quayle published a review
titled, ‘The parachors of organic com-
pounds’, comprehensively surveying the
field"*?. He paid much attention to his
own and earlier attempts to improve the
parachor equivalents in order to obtain
calculated values that would fit the ex-
perimental values better. He constructed
extensive tables comparing, most impor-
tantly, the values of Sugden, of Mumford
and Phillips"® (who had expressed dissat-
isfaction with some of Sugden’s values
for the parachor equivalents) and of his
own group, paying particular attention to
the purity of materials tested for recor-
ding new experimental data*®". Efforts in
these directions have continued into later
times' ™14,

There were many attempts to derive
the idea of parachor from theoretical first
principles based on statistical thermody-
namics even in the early period'. As-
sessments of the manner of the co-
variation of surface tension of a liquid
and the difference between its equilib-
rium liquid and vapour densities gener-
ally started with the common-sense
proposition that the contacts of a “parti-
cle’ at an interface would, on the aver-
age, be less numerous than those of one
in the bulk. Next considered were
changes in the potential energy that may
accompany the creation of an additional
unit of surface under reversible condi-
tions. Functions of fluid characteristics,
such as critical volume (V.), temperature
(T.), surface free-energy (¢) and charac-
teristic length (ro), etc. were taken in
various combinations and raised to frac-
tional powers in the derived expressions
(one example: [P] = 0.324TC1/4VC7/8; Fer-
guson and Kennedy'®®). Attempts were
also made to give the power index a
value other than 4 or % respectively, in
the Macleod and Sugden expressions, ei-
ther for theoretical reasons or for better
fit with experimental results.

It would not be unfair to say that most
or all such efforts have foundered on the

fundamental question of what exactly is
the dimensionality of [P]. In spite of the
possibility that attributing the dimen-
sionality of volume (L% to the function
could be fundamentally untenable'®s,
there were important works premised ac-

tually on [P] representing volume.

‘Parachor’ represents molecular
volume

In a 1937 paper, Bayliss'” described re-
sults purportedly showing that Sugden’s
original interpretation that parachor is a
function of molecular volume may be
applied with marked success even while
he declared that, ‘Parachor suffers from a
lack of a clear physical interpretation. . .
attempts at a theoretical treatment have
not succeeded in supplying an interpreta-
tion... and without a considerable
advance in our knowledge of the theory
of the liquid state, it would seem impos-
sible to obtain one on purely theoretical
grounds’.

Bayliss recalculated parachor constants
(or ‘equivalents’ as they were also called)
by fitting the data on the n-paraffins
from published tables'®, by least squares
procedure using the linear expression
P(C,Hy,+) = nP(CH,) + 2P(H). The other
parachor constants necessary for drawing
comparisons were those of the halogens.
These were calculated from the data on
n-alkyl halides'® by the relation P(X) =
P(C,H;,1 X) —nP(CH,;) — P(H). The recal-
culated atomic constants as compared by
Bayliss with previously recorded values
are given in Table 3; the only signifi-
cantly wide differences are seen in the
values for carbon and hydrogen.

Bayliss proceeded on the following
formal bases: ‘The closeness of approach
of two atoms is governed by their bond
radii (denoted hereafter by r) if they are
chemically bound, and by the vaguer
‘packing radii’ (r') if they are not. .. In a
tetrahedral molecule, the central qua-

Table 3. Comparison of parachor equivalents

Atom Sugden Mumford and Phillips Vogel Desreux Bayliss’ paper
CH, 39.0 40.0 40.3 39.9 39.92
C 4.8 9.2 115 8.3 9.1
H 17.1 154 14.4 15.8 154
F 25.7 255 - 26.1 26.4
Cl 54.3 55 - 55.0 54.6
Br 68.0 69 - 68.5 68.5
| 91.0 90 - 90.0 90.3
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drivalent atoms touch only those atoms
to which they are chemically bound, and
since the space they occupy is determi-
ned by their bond radii only, it will be
assumed that their volume is that of a
sphere whose radius is r. Adopting the
well established value of r=0.77 A for
the carbon atom®®, and assuming that the
atomic parachor of carbon is a measure
of its atomic volume, one obtains the re-
lation that one parachor unit = 0.210 A®.
This relation was used to calculate the
bond radii of other quadrivalent atoms
whose atomic parachors were known.
The results, shown in Table 4, include
the Pauling and Huggins bond radii for
comparison.

‘The agreement between the two sets
of bond radii is good [with the value for
carbon recalculated on the basis of data
of authors other than Sugden — Table 3],
but becomes better when some individual
cases are considered in detail. . .

‘The volume of a univalent atom is de-
termined largely by its packing radius,
not as easily defined as its bond radius. . .
If one were to adopt a naive atomic
model of a segment of a sphere of radius
r' cut by a plane surface at a distance r
from the centre (Figure 1), one sees that
values of r and r' cannot both be derived
from parachor data alone; but using the
relation one parachor unit=0.210 A®
and by assuming the Pauling and Hug-
gins values of r, it is possible to deter-
mine the packing radii of hydrogen and
the halogens from their atomic para-
chors. . .> [the full method pertinent to
this is not described here]. Bayliss’ re-
sults are gathered in Table 4.

‘[In] the chlorides and fluorides of cer-
tain quadrivalent atoms, the observed
bond distances are less than those calcu-

Figure 1. Atomic radii from parachor
data (r) and electron diffraction data (r').

lated from the Pauling and Huggins bond
radii*!, whereas the corresponding
tetraalkyl compounds have been found to
behave normally®®. This behaviour is re-
flected in the parachors, since the atomic
parachors of silicon, germanium and tin
are lower in their tetrahalides than in
their tetraethyls. Bond radii calculated
for these elements from the parachors of
their tetrachlorides and their tetraethyls
are given in Table 5, and are compared
with the bond radii obtained from similar
compounds by the electron diffraction
method®™**. A simplification has been
made in making the central atom of the
tetrahedral molecule wholly responsible
for changes in both the parachor and the
bond distance. The case of lead has also
been included in Table 5, since the bond
radius calculated from the parachor is in
better agreement with the value observed
in lead tetramethyl® than with the Pauling
and Huggins radius®®.

Bayliss’ results seem persuasive but
then the Md™' component, dominant in
parachor (see Exner’s stricture below),
would make it behave as though it repre-
sented a volume. However, it would
appear that the idea that the parachor is a
function of molecular volume had be-
come in a way entrenched before the
publication of Bayliss’ paper, even
though statements like ‘[parachor values
for the same group] indicate some variation
in the value for different compounds’,
surfaced in many publications®.

Interest in parachor determination as
an aid to the understanding of chemical
constitution waned in the decade of the
1950s of the last century, which saw the
appearance of Beckman’s ultraviolet and
Perkin—Elmer’s infrared spectrophotome-

ters. These instruments, priced within the
budgets of university chemistry depart-
ments, were easily operable by the wet-
lab organic chemist trying to make struc-
tural assignments. While these could be
among the basic reasons why parachor
was superseded, soon to follow were the
powers of such structure-determination
tools as single-crystal X-ray crystallogra-
phy, multiple irradiation pulse NMR
techniques and associated software.

Exner’s stricture

In 1966—67, Otto Exner of Prague publi-
shed a series of papers® in which he
examined questions relating to the ‘Addi-
tivity of physical properties’. In a pre-
liminary communication in Naturezs, he
argued that taking the fourth root of the
surface tension so weakens its contribu-
tion that any additivity found merely re-
flects the extent to which molecular
volume (the Md™" term) remains additive,
molecular weight being strictly additive.
He then advanced statistical reasons
why, ‘It can be concluded that the con-
ception of the parachor has no material
significance and its liquidation can be
suggested’.

The essence of Exner’s arguments is
best presented by directly reproducing
two graphs (Figure 2) from the last of his
papers in the series?‘, A comparison of
the two panels in Figure 2 shows that the
additive scheme is fulfilled more accu-
rately for the molar volume than for the
parachor. Multiplication by »'* actually
deteriorates the convergence of the best
line-fits. [This puts paid to such state-
ments as, ‘Parachor, which is practically

Table 4. Bayliss’ comparison of parachors and bond radii

Atomic parachor

Bond radius (A)

Atom Sugden Bayliss Calculated Pauling and Huggins
C 4.8 9.1 0.77 0.77
Si 25.0 26.2 1.10 1.17
Ti 453 44.1 1.30 1.22°
Ge 37.4% 36.0 1.22 1.22
Sn 57.9 55.4 1.41 1.40
Pb 76.2 75.6 1.56 1.46
Te - 56.7° 1.42 1.32°
1.37°

®Sidgwick, N. V. and Laubengayer, A. W., J. Am. Chem. Soc., 1932, 54, 948-952.
bSingh, B. and Krishen, R., J. Indian Chem. Soc., 1935, 12, 711.
‘Calculated from Wierl, Ann. Phys., 1931, 8, 521-564, assuming that r for Cl = 0.99 A.

“Tetrahedral radius.
fCovalent bond radius.
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forgotten these days (italics mine), is es-
sentially a molecular volume with the
fourth root of the surface tension as a
correcting factor’®®.] The scattered posi-
tioning of plots in the left panel clearly
implies that the parachor equivalent of
the —CH,— varies with the straight-chain
system of which it is a part. One may ex-
pect that parachor equivalents of other
groups will also vary with the chemical
system of which they are a part.

It appears to me that Einstein’s ap-
proach was nothing, if not quite rational.
We see him anticipating that the atom
values of ¢ should be expected to vary
with the system or series being studied.
To this extent even Exner’s stricture
seems to have been anticipated. The
‘mystery’ as to why the addition of a
—CH,— decreases the density in some
series and increases it in others (Figure
2) is solved when it is noted that hetero-
atoms in the group 7-12 control the
average distance between molecules in a
way different from what may be the case
with the less polar (or polarizable)
systems 1-5. This may be due to the
manifestation of incipient liquid crystal-
like properties in the materials of the
former group.

I presumed most people had become
aware of and accepted Exner’s position
based, as it is, on telling arguments. But,
surprisingly, none of the papers on trying
to get at a theoretical justification of
Macleod’s empirical formula from first
principle527 or for seeing a meaning in
the concept of parachor or even attempts
to obtain better parachor additivity equi-
valents'"?, published much after Exner’s
‘exposure’ that was as early as in 1967,
makes a reference to his paper. Nor have
there been any rebuttals, as far as I am
aware. Certain relatively modern text-
books or courses treat the subject exten-
sively?®, without mentioning pitfalls that
may lurk in the concept. Continued also
are instances of the use of parachor as
one of the molecular descriptors®® in
correlating the properties of substances
through methods of quantitative structure
property/activity relationships (QSPR/
QSAR)*™. Tt is possible that Exner’s
comments in a paper titled, ‘How to get
wrong results from good experimental
data: A survey of incorrect applications
of regression’® could be relevant to
some examples of the application of
QSPR/QSAR methods.

Remarkably, the parachor function has
been extensively used for the inverse
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purpose of calculating ‘surface ten-
sions’? (even of substances that may not
melt!) from parachor values calculated

situations may be encountered in the oil
and gas industry, where either there are
no surface tension data or when the

from known parachor equivalents. Many  number of variables is too large to make

Table 5. Packing radii from atomic parachors and from calculations

Atom H F Cl Br |

Packing radius (A)

From atomic

parachors 1.03 1.16 1.44 1.54 1.67
From the literature or 1.1 and 1.0% 1.12° 1.44 and 1.47° 156" 1.71
I =1%(X=X) 1.07"

®Stuart, H. A., XIV of Molekiilstruktur, Struktur und Eigenschaften der Materie in
Einzeldarstellungen, Springer, Berlin, 1934, pp. 47-48.

bPauling, L. and Carpenter, D. C., J. Am. Chem. Soc., 1936, 58, 1274-1278.

‘From %(F-F) in CFy4; from %(CI-Cl) in CCl, and CHClI;; electron diffraction: Pauling, L.
and Brockway, L. O., J. Am. Chem. Soc., 1935, 57, 2684-2692.

dl/z(Br—Br) as calculated from C—Br distance of 1.91 A reported in ref. 22.

Table 6. Parachors and bond radii for tetrahedral molecules

Bond radius (A) from

Atom Compound Parachor Parachor Electron diffraction

Si Tetraethyl 31.0 1.16 1.16%
Tetrachloride 23.8 1.06 1.03

Ge Tetraethyl 385 1.25 1.21°
Tetrachloride 34.8 1.20 1.11

Sn Tetraethyl 60.1 1.45 1.41°
Tetrachloride 54.4 1.40 1.30°

Pb Tetraethyl 75.6 1.56 1.52°

%values obtained from tetramethyls.

Figure 2. (Left panel) Test of additive character of parachor: Dependence of specific
parachor ' d™* on the reciprocal of the molecular weight. (Right panel) Test of additive
character of molar voslume: Dependence of specific volume at 20°C on the reciprocal of
the molecular weight for (1) n-Paraffins; (2) 1-Olefins; (3) 1-Acetylenes; (4) Alkyl ethyl
ethers; (5) Aldehydes, (6) o, w-Dinitriles; (7) 4-Alkylpyridines; (8) Alkyl benzyl ketones;
(9) 1-Nitroparaffins; (10) «,®-Dichloroparaffins; gll) Alkyl nicotinates and (12) a,0-
Dibromoparaffins. (Figure reproduced from Exner®™®.)
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practical a parametric study of the sur-
face tension of complex mixtures. Inte-
rest also lay in predicting the surface
tension of hydrocarbon mixtures contain-
ing dissolved gases at high pressures be-
cause capillary action may become the
controlling property in oil recovery and
surface tension data may be needed for
the solution of problems with equipment
design for operations like separation of
phases and mass transfer. It is possible
that the approximate values of surface
tension obtainable from calculations
based on parachor equivalents (e.g. of
the —CH,— group) were sufficient for the
calculation, for example, of phase equi-
libria of fluids confined inside porous
media (e.g. oil shale), a situation natural
to petroleum fluids. Theoretical appro-
aches to derive parachor or parachor-like
functions, especially those based on the
employment of additional parameters of
liquid properties or statistical mechanics
have been continued even lately.

In an interesting combination of the
ideas of statistical thermodynamics and
statistical mechanics, Satherley and
Schiffrin® have analysed parachor from
the point of view of what is called the
scaled particle (SPT; hard sphere appro-
ximation; Pierotti*) in attempting to
arrive at a fundamental understanding ‘in
view of its widespread practical use of
equations using parachor as a parameter’.
The SPT predicts that the surface tension
is given by

y= oRT(2 + y)4V (1 - y)°,

where ¢ is the hard sphere diameter of
the molecules in a pure liquid, V the molar
volume, T absolute temperature, R gas con-
stant, and y the packing fraction given by

y = 70 *N/6V,

where N is the Avogadro constant.

The authors state: ‘From these two
equations the parachor can be easily
calculated:

[P]= M}/M/pl — (RN3723/4 « 63)1/4T1/4
If W) "),

with
fo) =@+ NI -n"y.
‘Expressing the parameter as defined

above in the same units as employed by
Sugden one gets:

[P]=2.841 x 10T f (y)(o ¥ ).

The implication here is that the SPT pre-
dicts a simple relationship between the
molecular parachor and the hard sphere
diameter. Seemingly, a physical meaning
could be given to the past empirical ob-
servation that the parachor is related to
molecular dimensions. The authors con-
tinue: ‘However, there is no fundamental
reason for the choice of a function such
as the parachor to describe the surface
tension of a liquid. It just happens that
with this particular choice of function of
the surface tension [and] the packing frac-
tion function f (y) is fairly independent of
the chemical nature of the substance and
hence, a fairly simple universal relation-
ship with the hard sphere diameter [can
be arrived at]’.

The authors note, ‘The expression for
parachor given by Lennard-Jones and
Corner'®® based on statistical thermody-
namic considerations and using a lattice
model for the liquid was of the form:

[P] = const 452,

where ¢ is the energy parameter in the
Lennard-Jones potential>. “The hard
sphere diameter dependence predicted
is the same as that obtained with the
SPT’.

The authors compared the values of
the hard sphere diameter calculated from
the parachors of a large number and
variety of substances by plotting them
against those predicted from the van der
Waals molecular volume V,,, calculated
from functional group additivity contri-
butions. The correlation of V,, with the
hard sphere diameter o was based on the
relation:

(7/6)No? = -10 + 1.13V,,.

where o is the hard sphere diameter. The
expected straight-line plot was obtained
but with a slope of 1.07 instead of [ex-
actly] 1.0. This was taken as a systematic
deviation in the values of the calculated
hard sphere diameters but since this was
small ‘it is quite remarkable that a com-
paratively simple hard sphere liquid
theory can give such an excellent corre-
lation with molecular parameters derived
from entirely different considerations.
This result supports the idea that the mo-
lecular parachor is really only a function
of molecular properties encompassed in
the hard sphere diameter.’
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We should not fail to note here that
Satherley and Schiffrin go by Sugden’s
definition of ‘parachor’ and so did Len-
nard-Jones and Corner'®. Going by Ex-
ner’s stricture the contribution from the
surface tension component becomes weak
in the SPT definition of parachor. It ap-
pears what the authors did was to compare,
in effect, two definitions of molecular
dimensions, one based on statistical me-
chanics (hard sphere model) and the other
on calculations based on van der Waals
molecular volume — a slope close to 1.0
cannot be regarded as a surprise.

The present position

A molecule is an assemblage of moving
particles (nuclei and electrons) which are
held together by electrostatic and magnetic
forces. It cannot be thought of as having
a definitive boundary, but thinking of it
as a solid figure with a ‘volume’ has its
uses, such as in the study of intermole-
cular forces (e.g. those involved in surface
tension, especially at gas-liquid interfaces).

At this point it is interesting to recall
that Lennard-Jones writing in 1940 won-
ders, ‘The additive nature of the parachor
has been found of great value to the
chemist. It is not obvious why this func-
tion . .. should be additive when more
complicated molecules are built up. If
this involved only the attractive term one
might be able to relate it to the numbers
of electrons in the molecules, using such
general relations as the Slater—Kirkwood
formula [italics mine]’. With the modern
methods of quantum chemistry, it looks
possible to arrive at a definition of ‘mo-
lecular volume’, perhaps as the volume
enclosed within a contour surface (or iso-
cline) of an agreed electron density. From
this it seems possible to obtain values of
specific atomic (plus structural?) contribu-
tions. Can such a ‘volume equivalent’ be
related to Einstein’s ¢ parameters?

Recent methods of estimating molecu-
lar volumes, based on theoretical princi-
ples, have actually attempted the first
part of the enterprise trying to get at
numbers that represent a volume en-
closed within an isocline of electron den-
sity. They can be seen as falling into two
categories: van der Waals (referred to as
vdW in the paper) and semi-empirical.
Rellick and Bechtel® have compared the
results of calculating molecular volumes
of small molecules and proteins by the
two methods. They note, at first, that
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what may be taken as falling under ‘vdW
methods’ suffers from such inconsisten-
cies as using arbitrary variations in vdW
radii*® from calculation to calculation for
the atoms involved. However, a practical
method for calculating molecular volumes
could be to use interatomic distances de-
termined by X-ray crystallography in
conjunction with atomic radii published
by Pauling or Bondi®’ (refer also to Bay-
liss’ work described above). The authors
detail certain simplifying assumptions
needed for what may be described as a
general method for calculating volumes
of congregations of interpenetrating
spheres of different radii. The principle,
outlined in a website®, is as follows:
Calculating the total volume of the
spheres requires summing the volumes of
each sphere (Figure 3), subtracting out
the pairwise intersection volumes, since
each was counted once for each ball it is
inside. The intersection volume of the
three balls must then be added back be-
cause, although it was added three times
initially, it was also subtracted once in
each of the three pairwise intersections’.

For their calculation of volumes of
small molecules (and small globular pro-
teins), Rellick and Bechtel plotted elec-
tron-density contours employing semi-
empirical methods using a popular soft-
ware package. The electron density at
each point of a 3D grid covering the
molecule was next calculated. The grid
size and spacing between grid points
were varied as were the orientation of the
molecule within the grid. No assump-
tions were found necessary regarding the
values of the radii of individual atoms or
groups of atoms. The electron density
value for each grid point was then used
to calculate the volume of each molecule
as a function of the percentage of the to-
tal calculated electron density.

More particularly, the density values
output by the semi-empirical calculations
represent a continuum approaching zero

A B

C

Figure 3. Three overlapping spheres.
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from the regions of highest density to lo-
cations an infinite distance away from
the centre of the molecule. Zero values
were assigned to the points seen as hav-
ing insignificant electron density. These
values were then tested to determine
whether they lie within a certain limit. If
they did so, a location in a parallel array
corresponding to the point is assigned a
value of one. If they did not meet, they
are assigned a value of zero. After this
process had been completed for all the
points in the density array, the extent of
inclusion of the points was varied to de-
termine what per cent inclusion most
closely approximated the volume of
molecules, determined experimentally
(X-ray + vdW). One then had a three-
dimensional array of points, ones and ze-
ros, representing a map of the areas of
significant electron density. The simplest
possible method for calculating the vol-
ume at this stage is to determine the total
number of grid points that have electron
densities greater than or equal to that of
the limiting value, then to multiply this
number by Vj, the volume of one element
of the cubic grid. At sufficiently fine
values of the grid spacing, the calculated
volume was taken as having been accu-
rately represented. In this approximation,
the electron density is tested at different
points along each of the three coordinate
axes in the cubic lattice. On the basis of
their results, Rellick and Bechtel state
that molecular volumes derived using
van der Waals radii are generally 30%
lower than such experimentally deter-
mined volumes for small molecules.
They conclude that semi-empirical tech-
niques are more reliable, less arbitrary,
and are more accurate for the determina-
tion of molecular volumes.

Conclusions and outlook for the
future

a. Of great historic importance, possibly,
would be a plotting of Einstein’s ¢ values
against the values for the elements based
on semi-empirical molecular volume cal-
culations. Would one obtain a straight
line? It may be necessary to recalculate
the Einstein’s c¢ values using the latest
relevant physical data.

b. Would the semi-empirical molecular
volume calculations also predict different
additivity equivalents for the -CH,— group
in different series? Would these follow
the trends/changes seen in Exner’s plot?

c. Would the semi-empirical molecular
volume calculations show progressive
diminution in the contribution from the
—CH,— group in the higher homologues
accompanying changes that must be ex-
pected in the additivity equivalents as the
chain lengthens?

d. One expects that efforts to obtain
parachor-like functions, using deep-
based theories, for better technical appli-
cations mentioned earlier in connection
with uses of parachor in the practical cal-
culations would continue. These would
pertain mostly to the use of numbers
(generally referred to as ‘parachors’)
useful in the field of chemical engineer-
ing processes (miscibility, mass transfer,
etc.).

The subject of parachor should remain
in the syllabi of chemistry teaching,
since its story is illustrative of the way
science moves — and moves on.
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