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Introduction

The study of the algebra of operators in a Hilbert space in
a systematic manner began with the pioneering work of
von Neumann and Murray' and has scaled great heights
with the works of Tomita and Takesaki® and of Connes”.
Many of the mathematical questions in these path-
breaking investigations had their origin in physics, more
precisely quantum mechanics. For example, the problem
of the classification of the von Neumann factors involves
study of dynamical systems in an operator algebra while
the theory of Tomita and Takesaki has a natural canonical
relation with the so called ‘Kubo—Martin—Schwinger’
condition of the equilibrium quantum statistical mechanics.

One of the early questions in quantum mechanics that
was answered completely by Wigner in the 1930s is the
following.

Wigner’s Theorem: Let H be a complex Hilbert space
of dimension >3. Then to every automorphism of B(H),
the von Neumann algebra of all bounded linear operators
in ‘H, there corresponds (uniquely up to multiplication by
a complex number of modulus one) a unitary or anti-
unitary operator U satisfying

a(x)=UxU*, Vx e B(H). D
It can be further shown that if R 3 ¢ — o, € aut(B(H)) be
a group of s-preserving continuous automorphisms, then

e-mail: kbs_jaya@yahoo.co.in

1268

one has a unique one-parameter strongly continuous
group of unitaries U, such that

adx) = U, xU%, Vxe B(H),t € R. 2)
The reader can find details on these materials in ref. 4.

From the point of view of physical applications, the
automorphisms relate to the dynamical evolution of either
an isolated quantum system or a quantum system in equi-
librium with its environment, evolving in quasi-isolated
fashion. However, in situations in which the physical sys-
tems is far removed from equilibrium, one expects loss of
information and the automorphism group is no longer ap-
propriate, and furthermore, one notes that, in such a case
the evolution is likely to be not reversible, thereby neces-
sitating the study of the class of the semigroup of x-
endomorphisms of B(H) or more generally of an arbitrary
C* or von Neumann algebra.

At this point, there are two possibilities for moving for-
ward: (1) study the semigroup of x-endomorphisms of the
algebra concerned, (ii) go into more details of the
evolution for non-equilibrium systems, viz. contractivity
and complete positivity at each instant of time and con-
struct a model (often stochastic) to realize such evolutions.
This article will restrict itself to the second possibility
and try to describe briefly the progress in this direction,
with particular emphasis on the contributions over the
last two decades by the school at the Delhi Centre of the
Indian Statistical Institute, the details of which can be
found in refs 4-6.

For the purposes of this article, we shall assume some
knowledge of the basic ideas about C* and von Neumann
algebra and their representations. The reader is referred to
the book of Takesaki® for the general theory and to the
chapter 2 of ref. 6 for the portions relevant to our discus-
sions.

The most important notion in this area is that of a com-
pletely positive (CP) map (and more generally that of a
semigroup of CP-maps) acting on a suitable C* or von
Neumann algebra A. A linear map 7: A — A is said to
be completely positive if for any n € N,

Z Vil (xpx;)y; 20, Vix,y;t €A

i,j=1

3
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It is clear that every x-automorphism (or even every
x-homomorphism) of A is a CP-map. But there exist
more general class of CP-maps. In fact the following
theorem describes the structure of every CP-map on A.

Theorem 1.1 (Stinespring). A linear map 7: A4 —>
A (A c B(H)) is CP if and only if there is a triple (K, 7z, V)
consisting of a Hilbert space K, a unital x-homo-
morphism 7z: A — B(K) and Ve B(H, K) such that
TG)=V*a(x)V, Vx € A, and {z(x)Vu|x € A, u € H} is
total in K. Such a triple associated with 7 is unique in the
sense that if (K', z', }7) be another such triple, then there
is a unitary operator I': L — K’ such that z'(x) =T z(x)['*
and " =I'V. Furthermore, if A is a von Neumann algebra
and 7" 1s normal, then 7z can be chosen to be normal.

Here normality of a map 7': A — A means the property
that if there exists a net of positive elements {x,} of A
increasing (in strong operator topology) to x in A, then
the net {T(x,)} (which is necessarily positive) also in-
creases to 7(x). The above theorem of Stinespring says
that every CP-map is a x-homomorphism followed by a
general conjugation.

Since the normal =x-representations (equivalently,
x-homomorphisms) 7 of a von Neumann algebra A (in
particular of B(H)) has a simple structure, viz.

7(x) = Q*(x @ IpHQ, @)
where & is a Hilbert space (which can be chosen to be
separable whenever H is) Q: K - H ® k is a partial iso-
metry such that the projection QQ* commutes with x ® I
for all x € A, one can easily arrive at the explicit struc-
ture of all normal CP-maps on a von Neumann algebra A.

Corollary 1.2 (Kraus). Given any normal unital CP map
7 A—> AcB(H) (A avon Neumann algebra and H is
separable), there exist a sequence {R,} € B(H) s.t.

T(x) =Y RxR, (5)

I=>RR,,

where the sums on the right-hand side converge strongly.

The next question that arises naturally is the following.
Instead of a single CP-map on A, if we are given a semi-
group of CP maps on A, what kind of structure does it
have? This question aside from being of mathematical
importance has the possibility of application in many
physical problems. As we have mentioned earlier, the dy-
namical evolution of a physical system dictates a semi-
group of maps (which becomes a group of maps if the
evolution is reversible) and this semigroup is in general
believed to be a family of CP-maps on the algebra of ob-
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servables of the physical system (again in the special case
of reversible quasiequilibrium evolution, this reduces to a
group of automorphisms of the algebra).

More precisely, a quantum dynamical semigroup
(QDS) on a C* or von Neumann algebra A is a contrac-
tive semigroup 7, on A such that the map 7% is a normal
CP-map on A for each t € R.. Furthermore, it is said to
be conservative if T(I) =1, Vt>0.

There is another way of looking at a QDS, i.e. when
the algebra on which it acts is commutative or say an
algebra of functions. As a simple example, consider a
finite probability space S={1,2, ..., n} with probability
distribution given by the vector P = {p1, ps, ..., p,} On
it. Let f'be real-valued random variable, i.e. /:.S — R and
let 7= ()7 -1 be a stochastic (Markov) matrix such that
t; 20 and X7 ;= 1. Then one can associate a (discrete)
evolution on the functions as (Zf)() = 24 t;f () and
note that 7" is a positive map, i.e. maps positive functions
to itself and preserves identity and that if we associate
with each probability vector p (in a one-to-one fashion)
with the dual ¢, of the algebra of functions by setting
#p(f) =221 pif (i), then there is a dual action given by
(T* ) (x;) = Zi-1 pity. Where g is the characteristic func-
tion of the singleton {k}. Since for abelian algebras, posi-
tivity and complete positivity are equivalent, the discrete
semigroup (7'"),=0 provides an example of a dynamical
semigroup associated with a classical probabilistic set-up.
In fact, it will be the endeavour of this article to show
that in general this is a typical scenario for a QDS, at
least when the semigroup has a bounded generator.

Fock space, Weyl operators and quantum
stochastic integration

First, we recall some well-known facts about Fock
spaces. For a Hilbert space H and positive integer », let
H,="H*" denote the n-fold tensor product of H, and H,
denotes the one-dimensional Hilbert space C. The free
Fock space I’ (H) is defined as

VH)=@,_, Hn

The distinguished vector Q=1@© 0@ 0 @ - is called the
vacuum. For two Hilbert spaces H, K and a contraction
T':H — K, we denote by T, the n-fold tensor product of
T and set To=1. Let us define IV(7)= @::0 T,:
IV (H) — IY(K). Then, it is possible to verify the following.

Lemma 2.1. T is a functor on the category whose objects
are Hilbert spaces and morphisms are contractions, that
is, T/(ST) = (ST, /(1) = I. Furthermore, I7(0) is the
projection on the Fock vacuum vector and I¥(7%)=
aa)*.

Let H; and H;, denote respectively, the symmetric and
antisymmetric n-fold tensor products of H for any posi-
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tive integer n, and Hy = H = Ho. Then the symmetric (or
Boson) and antisymmetric (or Fermion) Fock spaces over
'H, denoted respectively by I(H) and T“(H), are defined as

() =@,_, Hn
r'ah =@, _, M

We shall be mostly concerned with the symmetric Fock
spaces in the present work, and hence for simplicity of
notation, we shall use the notation I'(H) for the symmetric
Fock space. Let us mention the basic factorization pro-
perty of I'(H).

Theorem 2.2. Consider the map Hou+— e(w) € I'(H)
given by e(u) = @ NCDE 24®" where u®" is the n-fold
tensor product of u for positive n and #® = 1. Then the
map e(-) is the minimal Kolmogorov decomposition (see
refs 4 and 6 for the details) for the positive definite kernel
H x H — C given by {u, v} — exp((u, v)). Furthermore,
{e(u): u € H} is a linearly independent total set of vec-
tors in I'(H).

Proof. That e(:) is a Kolmogorov decomposition for
the above-mentioned kernel is verified by the relation
(e(u), e(v)) = exp({u, v)). Furthermore, the relation

n
2, ®"
7e(tu)|l:0= n) ' “u

©)

shows that for every u € H, u®" belongs to the closed lin-
ear span of e(u). Since the vectors of the form u®" where
n varies over {0, 1, 2, ...} are total in I'(H), the assertion
about minimality follows. To prove the linear independ-
ence, suppose that uy, us, ..., u, are distinct vectors in
H and z,...,z, are complex numbers such that
Yi-ze(u) =0. Then we have, for all re R, Xiz x
exp(Ku;, v)) =0 for all v e H. Since uy, ua, ..., u, are
distinct, there exists v € H such that the scalars (i, v) are
distinct and hence the functions {¢"“* "} are linearly in-
dependent, which implies that z; = 0 for all ;.

Corollary 2.3. For any dense subset S of H, the set
{e(u). u € S} is total in I'(H).

Corollary 2.4. There is a natural identification of
I'(H®K) with I'(H) ® I'(K) under which e(u# ®v) —
e(u) ® e(v).

For contraction C on H, we define the second quantiza-
tion I'(C) on I'(H) by
I'(Ce(u) = e(Cu).

We observe the following.
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Lemma 2.5. T(C) admits an extension to I'(H) and the
extension, denoted also by I'(C), is a contraction. More-
over, if C is isometry (respectively unitary), then so is I'(C).
Proof: For o € C,vectorsu; € H(i=1, ..., n), we have

2

F(C)[Zn:aie(ui )]

i=1

= Z oot ; exp((u;,C*Cu ;))
i,j=1
1 &

= Z—Za o (uy, C*Cu ;)™
m=0 m i,j=1

PRL

=y —,@n, Cc*O)" ).
0 m!

sexpGu” L (O 0

§|>—a

where we have denoted the m-fold tensor product of a
vector or an operator by the symbol ®” (with v®°m=
1eC, (C*C)®°:= 1), and by #u,, the vector X7 O!l-ul-®

Since (C*C)™" 1s a positive contraction for every m, we have

m=0 m=0

0 1 n
= Z%Z oo g u )" = Zaa exp(Ku;.u ;)

m=0""ij=1 i,j=1

2
n

= Zaie(ul)

i,j=1

This completes the proof that I'(C) extends to a contrac-
tion, since the linear span of exponential vectors is a dense
subset of I'(H). It is straightforward to see that I'(C) is an
isometry (respectively unitary) whenever C is so.

For u € 'H and unitary operator U in H, we define the
Weyl operators W (u, U) by setting

W(u, U)e(v) = exp [—% lu | =, Uv)je(u + Uv).

It is known that the von Neumann algebra generated by
the family {W(u,I): u € S} is the whole of B(I'(H))
whenever S is a dense subspace of H. One can also verify
the following properties of the Weyl operators: (i) the
correspondence (u, U) — W(u, U) is strongly continuous,
and (i1) they satisfy the Weyl commutation rule:

W, Uy) W(ua, Uz) = exp(-11mu, Uruz))
X W(Ml + U1M2, U1U2).
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we refer the reader to ref. 4 for a further detailed descrip-
tion of Fock spaces and related topics with applications to
quantum probability.

Let & and ko be two separable Hilbert spaces, and we
consider first the tensor product Hilbert space H =/ ®
I'(LA(R., ko)). This Hilbert space admits the following con-
tinuous tensor product decomposition: for 0 < s <7 < oo,

H = h ® T(LAJO, s], ko)) ® T(L([s, 1], ko))
®TULY[t,®]. ko) =(h®T)®IE® I (7

given by the decomposition of the exponential vectors
e(f) = e(fx0s) © e(f1s0) ® e(fx1 «1)» Where = means the
isomorphism of Hilbert spaces. Let {e;};; be an ortho-
normal basis of k. We set for an interval Ac R,
j=1,2,3,....fe L* Ry, ko

A;(Ne([f) = ey [re( ).
d
A7 We(f) = —iae(f 1€ =0

- d .
AL(Ne(f) = —ige(explit gy le; ><exl] Nli-o-

where |e; >< ¢ is the associated rank-one operator in ko.
These three (unbounded) operator-increments give rise to
the three fundamental quantum stochastic integrators
called annihilation, creation and conservation increments.
Here it is worth mentioning the relationship between this
picture and the classical probabilistic picture. If o €
Co(R,), the linear space of continuous real-valued func-
tions on R, vanishing at O, equipped with the topology of
uniform convergence on compact subsets of R, then fol-
lowing Wiener, one constructs a measure P on Cy(R)
such that with respect to this measure the increments
{lo(®)— w(s)]: 0<s<t<ow} constitute independent in-
crement Gaussian random variables (called the standard
Brownian motion) with mean O and variance (¢ — s).

In such a set-up, the Hilbert space L*(P) is isometri-
cally isomorphic with the (symmetric) Fock space
I'(LA(R,)), the isomorphism being given by the associa-
tion: for f e L*(R,), and 0 < s <1< oo,

exp[ [ r@ao@ -5 f(r)zdr] © e(f Zon):

such that

| dP(a))[Tf(s)dw(s) - %Tf(s)zds]
0 0

[cel 1 [cel
x exp{ [EOIEORS g(s)zds}
0 0

=exp((/f.&) 25 ) = () e(@hr

(Ry)
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Furthermore, under the same isomorphism the operator of
multiplication by {@(s)} goes over to the (unbounded)
self-adjoint  operator  O(s) = A(s) + A" (s) = A([0, s]) +
A*([0, s)).

Next, we want to define quantum stochastic integration
for a class of integrands. We call a function R, > t— L(¥)
an adapted process with respect to the ‘filtration’ given
by the continuous tensor-product decomposition of the
Fock space, if L(¢) is of the form L, ® Iy, for the Fock
space factorization: (h ® I';) ® I for every ¢ > 0. At this
point, it is useful to introduce a compact notation. The
Greek indices «, f will run over (0, 1,2,...)={0} UN
while j, k € N. With that convention, we set Ag(A) = |A],
the Lebesgue measure of A, AH(A) = A[N), A?(A) = A;(A).

A (D, Dp)-adapted process L is called measurable,
given the dense sets Dc h and Dy € LZ(R+, ko), if the
map ¢ — L(Hue(f) (for every u € D and f e D) is Borel
measurable. Such a measurable process is called (quan-
tum)-stochastically integrable if there exists a sequence
{L (D)} 0 of simple (D, Dy)-adapted processes such that

lim [ 2, (s)ue(f) = LisyueC NI (L +11/(s) [F)ds = 0
0
forallu € D, fe Doc LRy, ko), t=0.

Then the following lemma give the tools to compute the
stochastic integrals and their product (for proofs, see refs
4 and 6).

Lemma 2.6. (1) Let {L(H)}so be (D, Dp)-adapted mea-
surable and stochastically integrable process. Then for
vvueDch fgeDycl,t=0,

t dAj
ue(f). [ L(s){d4; (s) { ve(g)
0 A (s)
, g;(s)
= Ids(ue(f), L(s)ve(g)) f] (%) respectively.
° 71918 ()

(11) Let {L1()} o and {L,(8)} 0 be two (D, Dog)-adapted,
measurable and stochastically integrable processes. Then
foru,ve D, f,g e Dyand t =0,

. d4,(s) d4,(s)
[ )] 45 () puel, [ Ly ()4 44/ (5) pve(g)
©dALGs) ° dAS,(s)
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' s d4,; (x)
= jds Ly(s)ue( ), ILZ(x) A4’ (x) b ve(g)
0 0 dA! (x)
f;(s)
X9 g;(s)
f1(9)g(s)
t s d4; (0
+[as( [L0o){ dd; () pue(), Ly(s) ve()
o\’ dA] (%)
g (s) t
<1 S e, Ly(sive(@)
Si()gu()) °
0 0 0
x <10 é'lj 5,f;gl(s) ds
0 5 f(s) Snfi()g;(s)

respectively. The third term on the right-hand side of the
above expression reflects what are called the ‘quantum
[to correction terms’.

Next we consider quantum stochastic differential equa-
tions (QSDE) with constant B(h)-valued or a class of un-
bounded operator in A-valued coefficients and their
solutions.

Consider the QSDE in 4 ® I'(LA(R,, ko)) with initial
value as given below:

t
V, = ILeor + IV{Z Q@5 = 5HdA% ()
0 e

+Z[(RjdA;(s) - > RiQf*d4, (s)]
i 7k

. 1 .
+[1H - EZR]-R]]ds}
7

where

=7+ IVSZL;dAg(s), (®)

a,p=00

O -5l a=j p=k=1
Ry a=jz1 =0

LR a=0,p=j21
(i -1YRR): a=p=0

L, =

and {A%(ds)} has already been introduced earlier, with
R; € B(H) for j =2 1, H a bounded self-adjoint operator in
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h, Q= ((Q@)j,kzl h®ky— h® ky is a unitary operator.

Then we have the following theorem™®.

Theorem 2.7. The QSDE (8) has a unique unitary operator-
valued (h, L*(R., ko))-adapted measurable solution V.

Solution of a class of QSDE with coefficients
which are bounded maps on a von Neumann
algebra

We start with a QDS {7} on a von Neumann algebra A
(acting in a Hilbert space /) with bounded generator £
which then turns out to be also a normal map on A. As
will be shown in the next section, in such a case there i1s a
canonically associated triplet (ko, 5, o) with &k, a Hilbert
space (which can be chosen to be separable if / is separa-
ble), s e B(A, A® ky) and o e B(A, A® B(ky)), where
B(X, T) stands for the normed linear space of the bounded
linear maps from X to Y. These satisfy the following:

AD) c(x)=Z2*Gx®I)Z—x®u=7m(x)—x® I, for
x € A, where Z is a partial isometry in s ® k, such
that zis a x-representation of A in h ® ko,

(A2) 5(x)=Rx— m(x)R, where R € B(h, h ® ko) so that

dis m-derivation, i.e.
S =0y +zx5(@y) forallx,ye A,

L(x)=R*7 (x)R + Ix + x/* where [ € A with the
condition that £(]) =0, so that £ satisfies the sec-
ond-order cocycle relations with & as coboundary,
ie.

L(x*y) —x*L(Y) = LO)*Y = 5 ()*6 (v)
forallx,y € A.

(A3)

The triple of the maps (£, &, o) on A are called the struc-
ture maps and often one associates a structure matrix with
it:

L(x) §7(x)

O(x) =
) Lm 3(0)

} forx € A, where

5 (x) = 5(x*)* so that ® € B(A, A ® k)

with 120 =C® ky. If & and hence kg or 120 is separable,
then by choosing an orthonormal basis {ep=
1, e, €5 ...,eynt (N could be finite or infinite) of ko, we
can write © in this basis as a matrix (@) of maps from
A into A as follows:

B(x) = L(x), 03(x) = §,(x) = (5(x),¢;) € A,
Of(x) =5/ (x) = 5,(x* € A, O](x) = 7] (x) - 5],
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forxe Aandj, k=1,2,3,. ... Thus it is easy to verify
using (A1)—(A3) that the structure maps satisty the follo-
wing structure relation:

N .
0% (x.y) = 0% (x)y + XO%(») + Y. 0% (0O (). (10)
7=l

Then with respect to this basis, consider the following
QSDE (or equivalently, the integral equation) for the map
JirA—> A® B forr=0

Ji) = x® I+ 3 [ OF DAL ds),
.80

(1

where {AZ1)} are the (unbounded) operator processes de-
scribed in the previous section. Then the principal result
in this section is the following theorem (see refs 6-8).

Theovem 3.1. Let A be a von Neumann algebra of op-
erator acting in a separable Hilbert space / and let (©%)
be the matrix of bounded structure maps on A satisfying
(A1D)—(A3) or equivalently eq. (10). Then the QSDE (11)
has a unique solution j(x) such that

(i) for every t 20, j;: A—> A®B(I') is a x-homomor-
phism,

@) 7ol £ llxll, £ — jAx) 1s strongly continuous,

(i) Asx—j(x) € A® B(I) is normal.

V) G, BGLW) = u ® e(0), jlxv ® e(0)) = (u, T(x)v),
where {7} 18 a Cy-semigroup on A with the original
generator £, 1.e. T, is the QDS we had started with.

A proof of this can be found in refs 6 and 7. In effect,
the theorem establishes the existence of s-homomorphic
stochastic flow (or diffusion) over a von Neumann alge-
bra A, satisfying the QSDE such that its (vacuum) expec-
tation gives back the original QDS. As a special case, one
can recover for example, simple classical diffusion in R?,
provided one ignores the fact that all the structure maps
are ‘unbounded’ in this case. The von Neumann algebra
A=L7RY,  OY@)x) =—(ID)APE) for ped,=
BC*(R% (the s-subalgebra of A consisting of bounded
smooth function on Rd), ®,=0 for L k=1,2,3...,d
and OF(p) = ONp) = 10, for j=1,2,...,d so that the
QSDE in this example reduces to

t
. (1
@) =9@I py oyt !Js [—ijds

dt
+> [ ;0,0 d0,(s), (12)
0

7=l

where Qj(s) = A(s) + A;(s) ~ multiplication by the jth
component of the R%valued standard Brownian motion
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{w(s)} and ¢ € A,. It is also clear what the solution of
eq. (12) is going to be like, in fact: j{@)(x) = ¢ (x + w(£))
which belongs to A for almost all w, ie. j; A > A®
B(L*(IP)) is a s-homomorphism of A.

Thus the QSDE (11) is a generalization of the classical
diffusion equation like (12), albeit with bounded structure
maps. The case of unbounded structure maps, in its full
generality, is far too complex; however, for a class of
QDS’s there is a theory which we shall discuss in the last
section.

It is worth noting that if we take the (classical) expec-
tation of jU @), ie. Tdo) = Eilp) =lp(x +w(®) P(dw),
then 7 1s a Co-semigroup on A and its (unbounded) gen-
erator is —1-A.

Existence of structure maps compatible with a
given QDS

The question that needs to be addressed now is the follo-
wing: is there a set of structure maps (®%) or equiva-
lently, the triple (ko, &6, o) mentioned in the previous
section which are canonically associated with the given
QDS on a von Neumann algebra. The answer is given in
the next theorem.

Theorem 4.1. Let {T}}s0 be a norm-continuous conser-
vative QDS, i.e. T(]) =1, V¢ on a von Neumann algebra
A c B(H) (h separable) with generator £. Then there
exists a separable Hilbert space ko, a normal s-represen-
tation 7z: A —> A® B(ky) and a mderivation &: A —
A ® ky such that the properties (A1)—(A3) in the previous
section are satisfied.

A proof of the result can be found in ref. 6. It should be
noted that there is no uniqueness statement here. In fact,
this problem (sometimes called the ‘stochastic dilation
problem’ of a QDS) has many possible solutions, not
the least of which is due to the fact that the dimension of
the Hilbert space &, can be quite arbitrary. It may be pos-
sible to give a minimal dimension on the basis of some
further hypothesis on the QDS, but this is not known at
present.

This section, read along with the previous one, gives
the following fairly satisfactory picture: Given a norm-
continuous QDS {7;}ro on a von Neumann algebra
A < B(h) with bounded generator £, there exists a flow
of s-homomorphisms {j;}so from A to A ® BA'(L*(R,,
ko)) satisfying the QSDE (11) such that E(j(x)) = Ti(x),
Vx € A. This solves the dilation problem completely
(though non-uniquely) for the case of norm continuous
QDS.

Another question may arise that when is this family of
x-homomorphisms unitarily implemented, just as was the
case with Wigner’s theorem, mentioned in the introduc-
tion. The next theorem answers this in the affirmative for
the norm-continuous QDS.
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As we have explained in the previous section and in the
introduction,

() =Q*F (x® [ )Q e A® B(ky),
S(x)=Rx-r(x)Re A®k, with R € B(h,h® k)

and with Q a partial isometry in /& ® k, such that QOQ*
commute with x ® I, Vx € A.
Let us consider now the QSDE (8) in 4 ® (T(LA(R,,

ko)):

t w0
Vi =lher + II/S Z (QI;* - 51§)d/\1;(s)
0 J.k=1

t w0
+ j vy [R].dA; ()= > RO dd, (s)]
o Jj=l k
t 0
+[v, [iH - %ZR;R]-] ds
0 j=1

where (%) and {R;} are the components of the operators 2
and R in a basis of &, as described earlier, except that Q is
only a partial isometry here and not unitary.

Then we have the next result, the proof of which can be
found in ref. 6.

Theorem 4.2. Let {j;}po0 be the x-homomorphic flow on
the von Neumann algebra A, associated to a QDS 7} as
described in theorem 3.1. Then the QSDE (13) in
h ® I'(LA(R,, ko)) has a unique adapted contraction valued
process. Furthermore, V; is a partial isometry-valued
process and the x-homomorphism j, is implemented by V,
1e. j{x)=V(x ® Ir))* with the projection-valued proc-
esses ]% =VV% and G,=V*V; belonging to A ® B(I)
and A’ ® B(I) respectively.

In other words, the last two theorems together com-
plete the picture for a QDS on a von Neumann algebra
just as Wigner’s theorem did for the group of s-automor-
phisms. The analogy is complete except for the fact that
the dilation and its implementation are both stochastic in
nature. Another feature of the theorem is worth noting,
viz. while the map 7 in eq. (4) gives a x-homomorphisms
of the algebra A in B(h ® k), the family of maps {j,} o
gives a flow of x-homomorphisms. Similarly, while the
partial isometry € is such that QQ* € A’ ® B(ko),
4V, e A ® BIU(LA(R,, k), Vt=0. In other words,
7 —> j;1s a kind of ‘exponentiation map’.

QDS with unbounded generator

This problem is naturally more difficult to handle and one
needs to have more ‘smoothness structure’, compatible
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with the QDS, on the algebra on which the QDS acts.
This is achieved by assuming that there is an action of a
second countable Lie group (G on the C* or von Neumann
algebra A c B(h), i.e. there exists a map Gog s
o € x-aut(A), the group of x-automorphisms of .4, which
is furthermore assumed to be continuous with respect to
the strong operator topology induced by B(h). It is fur-
thermore assumed that the QDS {7’} .0 is covariant under
the above action, 1.e. T {a(x)) = a(Tx)) for all x € A,
ge G and t>0. If we set A, to be the subset of A con-
sisting of all elements x such that g — o,(x) is arbitrarily
often differentiable with respect to the norm topology,
then it can be shown that o,(A ) < A, and that A, is a
dense x-subalgebra of A.

If furthermore, there exists a densely defined, semi-
finite, lower semi-continuous, faithful trace z on A, in-
variant under «,; then we can choose 4 = L*(7), the non-
commutative L>-space with respect to 7, in which A acts
by left-multiplication. The invariance implies that
o (x*)) = 7(x*y) for x,y € A, = {x € A7 (x*x) <oo},
which is ultra-weakly dense in the von Neumann algebra
generated by .4 in B(H). Thus the action «, of the group
in this case gives rise to a strongly continuous unitary
representation in {ug}ecc in A.

We denote by ., the subset of / consisting of vectors
& such that g — u,& is arbitrarily often differentiable with
respect to the Hilbert space topology of /4, and note that
h,, 1s dense in A. Now we assume that the QDS {7} .0 is
symmetric with respect to 7 ie T(A)c A, and
(T(xy) = v(xT(y)) for all x, y € A, In such a case, the
QDS {T;}»0 can be canonically extended to a Cy-semi-
group of positive contractions on 4. We have already de-
noted by L, the generator of {7t} with respect to the
weak operator topology of A, and now we denote by £,
the generator of {7}}.0 in A, and note that £, is a negative
self-adjoint operator in 4. Then we have the following re-
sult whose proof can be found in refs 6 and 9.

Theorem 5.1. Let A be a von Neumann algebra with a
semifinite faithful lower semicontinuous trace 7 on it
such that the QDS {7} .0 acting on A is symmetric with
respect to 7z Furthermore assume that there is an action of
a Lie group G on A such that 7 1s invariant and 7} is co-
variant under this action and such that A, < D(L) and
he, € D(Ly).

Then, (i) there exist a Hilbert space K and a linear op-
erator R:h — K with D(R)= A, N h, such that Ly(x) =
—2R*Rx for x € D(Ly), and L(x) =R*z (x)R —FR*Rx
—ExR*R forallx € A, N Ay,

(i) If G is compact, then the assumption that
A, < D(L) implies that A, € D(L);

(i11) There exists a Hilbert space &y, a partial isometry
YK — h ®k, (where ko=L*(G)® ky) such that z(x) =
2¥(x ® I )X and R =3R is covariant in the sense that
(g ® v) R =R ugon A, N h, with vy =L, ® I, on ko, Lg
denoting the left regular representation of G in L*(G);
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(iv) The QSDE in & ® T(LX(R,, ko))

t 0 t
Vi = Dyor + [V, 2 4R,447 () = Rjdd, ()} + [V, £,ds,
o J=l 0

(13)

admits a unique unitary solution satisfying (u,
EWV{x @ INVHIVy=(u, Tdxw), foru,ve h,x € A, t=0.

Thus in the situations where the structure of the von
Neumann algebra is such that there is a group action on it
consistent with a trace on it as well as with the QDS, we
can construct a quantum stochastic dilation on it as was
done for a QDS with bounded generator in the previous
section. These hypotheses are satisfied for all classical
symmetric Laplacians on Lie groups themselves, driving
classical diffusions, and also for the QDS generated by
the canonical non-commutative Laplacian on the Weyl
C*-algebra on R* (see page 207 of ref. 6).

Application and conclusion

We shall briefly discuss here about a physical model
where QSDE with unbounded coefficients arise naturally.
Consider the well-known example of a classical damped
harmonic oscillator described by the equation of motion:

—+205d—q

2
+ =0
d[z dr “4 ’

(14)

where o, @ are positive constants satisfying o < @. This
is a nonconservative system, and thus cannot be described
by a Hamiltonian. Nevertheless, we can introduce a pair
of “conjugate variables’ (p, ¢) satisfying damped harmonic
oscillator described by the equations of motion:

dg _ dp

5 =P 5=52q—04p, (15)

where & : Jo? —a?. It can be verified by simple compu-
tation that the second variable ¢ of the pair (p, q) satisfy-
ing eq. (16) will be a solution of eq. (15).

Furthermore, we can rewrite eq. (16) in a more conven-
ient form in terms of a complex-valued function a = a(¥)
of time #.

49 _ _a+ida

& (16)

Here (p, q) are related to a by
a= 28 "P(p-isq), a' = 25V P (p +isg). (1T)

with a'():= %. Solving this equation, we get
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p(t) = e “(p, cosSt — 5q, sin 1),

gty =¢ (qo cosdst + [;—Osin 51},

where po, q¢ are the initial values. It is clear that even if
(po> go) 1s a true conjugate pair, (p(¥), g(¢)) is not so for
any positive ¢. This is of course expected. The quantiza-
tion of the problem does not bring any change to the
above situation and leads to the conclusion that there is
no unitary time evolution which gives rise to the equation
of motion (17).

Let us now change the picture and consider the situa-
tion when the damping comes from a quantum noise. To
be more precise, let us replace the commutative variables
(p, q) by a pair or unbounded operators, say (P, Q), such
that the operator a, a* defined by a= Q& @- 180),
a* =26 P+ 10), satisfying the canonical commuta-
tion relation (CCR) [a, a*] =I. In fact, we can take P =
—i(d/dx) and Q to be the multiplication by x on the Hilbert
space b =L*R). We model the quantum damped harmonic
oscillator by the equation of evolution given by the follo-
wing QSDE:

t
U, =1+ IUS(R*A(dt) + S(A*df) — (o +18)aa*a db).
0

where R = a2a, S = -R.

It should be noted here that if « =0, that 1s, if there 1s
no damping, the above equation becomes dU/dt=
-1oUa*a, Uy=1I, so that the solution will be the evolu-
tion group for the well-known standard quantum harmonic
oscillator.

Some results are known on the unitarity of the solution
of the above QSDE, and it has been shown on page 182
of ref. 6 that the above initial value problem does indeed
admit a unitary solution.

In this useful example the technique developed earlier
works very well. A part of the reason is that the potential
function involved is quadratic (more generally a polyno-
mial) in the position variable g. For a more general situa-
tion with an arbitrary smooth bounded potential, for
example, one needs to adapt the theory somewhat and
this will be the content of a forthcoming communication.

From an intuitive point of view, a contractive QDS
{T+} 0 1s believed to describe a dissipative, irreversible
evolution of an observed system. It is also believed that
isolated systems, on the other hand, will undergo an
automorphic evolution which is necessarily reversible.
Therefore, one can infer that the irreversible evolution 1s
likely to be due to the presence of an environment, inter-
acting with and much larger than the observed system, in
such a way that the total system (consisting of the envi-
ronment and the observed system) evolves with the help
of unitary conjugation in an appropriate Hilbert space de-
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scribing the total system. The theory that has been deve-
loped here gives such an evolution (though stochastic)
which is the description of the evolution of the total system
in ‘some approximation’. But when the considerations are
restricted to the observed system only, one has to ‘wash
out’ or average the effect of the environment by taking
expectation over the stochastic variables modelling the
environment, resulting in the QDS which is the observed
dissipative evolution of the observed system.

One can ask that under the total evolution, how does
the stochastic variables modelling the environment be-
have. In fact, the fluctuation in these variables (which in
general would depend on the ‘thermal state’ or tempera-
ture of the environment) and the resulting dissipation in
the evolution of the observed system should be related:
physicists call such result ‘fluctuation—dissipation theo-
rems’.

Finally, just as in the study of classical stochastic pro-
cess, the geometry of the underlying manifold dictates the
Laplacian which in its turn drives the Brownian motion of
the manifold, similar constructions can be made in some

e¢lementary non-commutative geometric spaces’. How-
ever, there is no general theory for this at present.
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