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Applying pure mathematics: mathematics in the natural sciences

Siddhartha Gadgil

‘The book of nature is written in the lan-
guage of mathematics.” This quotation,
attributed to Galileo, seemed to hold to an
unreasonable' extent in the era of quan-
tum mechanics. However, as the epicen-
tre of natural science has moved towards
biology, one wonders if it is now dated.

Meanwhile, mathematics has deve-
loped in two different ways — so-called
applied mathematics addresses problems
that are known to be related to the natu-
ral sciences and engineering. Meanwhile
(pure) mathematics has developed pri-
marily based on its own internal criteria
and processes.

It is thus natural to wonder what role
(pure) mathematics will continue to play
in the natural sciences. As has been ob-
served by Gian—Carlo Rota, among others,
it is the concepts, not the results, of
mathematics that have proved to be of
use. We remark that applications in engi-
neering (for example, cryptography) are
often of a very different nature; we shall
not consider such applications here.

Here we shall outline a typical
instance of an application of pure mathe-
matics in natural science — the use of the
concept of curvature in the general theory
of relativity, and comment on whether
and how similar applications are likely in
the future. We begin with some general
remarks.

Natural science as an inverse
problem

According to the scientific method, one
accepts a theory if it can make falsifiable
predictions which are in agreement with
observations. While the predictions of a
theory can be obtained by deductive rea-
soning, to arrive at a theory one must use
some guesswork. Thus, discovery in natu-
ral science is what is called an inverse
problem.

It is illustrative to consider another
complex inverse problems — vision. While
our eyes see two-dimensional images, to
make sense of the world we need to
resolve it into different objects. Given
the positions of objects and the nature of
incident light, it is relatively straightfor-
ward to deduce how the image should
look. However, the problem of resolving
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the world into objects and deducing their
properties from the images we see is not
even solvable in principle. In practice,
we solve this by making many simplify-
ing assumptions. Indeed, optical illusions
are based on creating images violating
these assumptions.

A theory in natural science is analo-
gous to a description of the positions and
properties of various objects in our sight.
One can deduce from the positions and
properties of the objects a prediction of
the images on our retinas, allowing us to
test the ‘theory’.

Our visual cortex deduces the posi-
tions and properties of the objects from
the image they produce. While this is a
remarkable feat, we can at least start with
our knowledge of different kinds of
objects around us and the range of their
properties.

In natural science, we do not even
have such a list of the analogues of
objects, namely concepts. Our brains,
designed by natural selection, can con-
ceive only of a limited range of concepts.
Indeed textbooks of quantum mechanics
typically begin with a list of apparent
paradoxes, which are consequences of an
implicit assumption that an electron is
either a particle or a wave.

Mathematics, through its processes of
abstraction, generalizations and exten-
sions, allows us to arrive at concepts that
go beyond the untrained imagination.
These become candidates for the con-
cepts used in a theory.

We shall illustrate this by sketching
briefly the concept of intrinsic curvature,
its history and its role in the general the-
ory of relativity. As with many useful
mathematical concepts, its construction
is not particularly complex or technically
difficult. Moreover, it is virtually certain
that any reasonably advanced mathemat-
ics would include this concept. Neverthe-
less, it seems unlikely that, for instance,
an experimental approach to science would
uncover this concept.

Extrinsic and intrinsic curvature

The curvature of a circle clearly decreases
as its radius increases. Thus, it is natural

to take the curvature of a circle of radius
r to be the reciprocal 1/r of its radius.
We extend this to define the curvature at
a point P on a curve C in the plane just
like tangents are defined in Calculus —
we take two points Q and R on the curve
C close to P and consider the reciprocal
1/r(P, Q, R) of the radius (P, Q, R) of
the circle through P, Q and R (we set
1/k(P, Q, R) = 0 if the points P, Q and R
are co-linear). As Q and R approach P,
we get a limit, which we define to be the
curvature.

The case of surfaces is a little more
complicated. While a sphere is clearly
curved by the same amount at all points
and directions, a cylinder is curved in
one direction but not the other. Thus, the
curvature of a surface depends not only
on a point on the surface but also a (tan-
gent) direction at that point. Euler
observed that the curvatures in various
directions are determined by two num-
bers — the principal curvatures. This is
analogous to an ellipse being determined
by its major and minor axes — indeed,
both cases are governed by a quadratic
function, which can be simplified by
completing squares. Both the principal
curvatures at any point of a sphere of ra-
dius r are 1/r while for a cylinder of radius
r, the principal curvatures are 1/r and 0.
The principal curvatures of a plane are 0.

Geometric properties of a surface can
be classified as extrinsic or intrinsic. An
intrinsic property of a surface is one that
depends only on distances measured
along the surface, i.e. is unchanged on
bending the surface. Thus, a square can
be bent into a piece of a cylinder, so
intrinsic properties of the square and the
corresponding piece of the cylinder must
coincide.

Intrinsic differential geometry, the study
of intrinsic properties, was born with the
work of Gauss, who observed that we
cannot make a map of a region of a
sphere without distorting distances.
Thus, while we can wrap a piece of paper
around a cylinder smoothly, we cannot
do so on a sphere without introducing
wrinkles. The fundamental discovery of
Gauss was that the product of the principal
curvatures, which we now call the Gaus-
sian curvature, depended only on dis-
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tances measured along the surface, i.e. an
intrinsic property of the surface.

Note that the principal curvatures
themselves are not intrinsic (consider for
example, a square and a piece of the cylin-
der). Hence, while the Gaussian curva-
ture is intrinsic, it is defined in terms of
quantities that are not. This mathemati-
cally unsatisfactory situation was reme-
died by Riemann, who developed a
genuinely intrinsic framework for differ-
ential geometry, i.e. one where we con-
sider just a surface and the distances
between points on it obtained by meas-
ured along the surface. In the process,
Riemann defined intrinsic curvatures for
what we call Riemannian manifolds,
which are the natural higher dimensional
analogues of surfaces with distances
coming from space.

It is not difficult to see that a sphere is
intrinsically curved — for example, the
area A(r) of a disc or radius » on the
sphere is less than the area v of the disc
in the plane of the same radius. Indeed a
Taylor expansion of A(r) near r=20
allows us to quantify curvature. How-
ever, rather than considering just the
magnitudes of curvature, it is more use-
ful to consider a more complicated object
called the Riemann curvature tensor.

Curvature and relativity

In Einstein’s general relativity, gravity is
due to the intrinsic curvature of space.
While the curvature of space seems to
most people to be a bizarre notion, there
is no better reason for space to be flat
(i.e. not curved) than for the earth to be
flat (as was once believed to be the case),
especially once one accepts that there is
no absolute medium called space but
only distances between events.

What makes (intrinsically) curved space
much harder to accept than the round
earth is that while the (extrinsic) curva-
ture of objects is very familiar, and we
merely have to realize that this applies to
the earth, intrinsic curvature has no sig-
nificance in our everyday life and is
hence an alien concept.

Merely accepting that space could be
intrinsically curved is of little use in de-
veloping relativity — one needs a precise
and quantitative concept of intrinsic cur-
vature. It is this that developed through
the natural evolution of mathematics.

Mechanics can be formulated in terms
of the principle of least action (generaliz-

ing the principle that light travels by the
fastest path). Einstein formulated general
relativity in terms of an action that de-
pended on curvature — specifically Ricci
curvature of a Lorentzian manifold. Such
a formulation made use of not only Rie-
mann’s curvature tensor, but the work of
several mathematicians that went beyond
this.

Mathematics as a genetic
algorithm

Mathematics develops through a process
somewhat analogous to Darwinian evolu-
tion, with new results being extensions
of older results, sometimes adapted to
the external environment. Unlike evolu-
tion, this is not based on random varia-
tion but on partially systematic rules for
modification and extension. With most
mathematics forgotten soon after its birth
and some pieces of work flowering into
new fields, there is also a selection proc-
ess; as with life this is partly based on
fitness and partly random. Further, the
insistence on rigour serves as a filter
which ensures most mutants do not sur-
vive — a necessity for any fruitful process
of evolution.

Result of this process is a proliferation
of new concepts, most of which are not
of any use outside mathematics, but
some of which provide the crucial con-
cepts for the development of natural sci-
ence, as we have illustrated in the case of
curvature. As with the case of life, the
most useful steps are the major transi-
tions, analogous to the invention of the
Eukaryotic cell or multi-cellularity. But
these cannot be isolated from the con-
tinuous process of evolution.

It is hard to imagine any of these con-
cepts being developed other than through
the internal development of mathematics
or some similar system (for example, in
many ways statistical physics develops
like mathematics). It takes successive
steps of refinement over the course of
time to arrive at the right concept, so one
cannot expect to provide it on demand.
On the other hand, simply trying to
invent concepts will clearly lead to a del-
uge of silliness.

A defence of mathematics?

We have argued that mathematics pro-
vides an unparallelled process for gener-

ating new concepts, and such concepts
are essential for natural science as dis-
covery is an inductive (not deductive)
process. However, there are at least two
kinds of barriers to this synergy.

Like evolution, a rerun of the deve-
lopment of mathematics will lead to a
different development. Just as one can
argue that any sufficiently developed pro-
cess of natural selection will lead to the
invention of the eye, many concepts such
as curvature are bound to be present in
sufficiently developed mathematics. On
the other hand, being governed in prac-
tice to a large extent by social factors,
the development can be dominated by the
analogues of the financial bubbles, tak-
ing away resources from what would be
more fruitful developments. A histori-
cally striking case of this is that, at least
till recently, probability has not been
regarded as in the mainstream of mathe-
matics in the West (though it has in Rus-
sia). From the point of view of natural
science, the greater value attached to
number theoretic rather than probabilistic
concepts is clearly unfortunate. Ironi-
cally, in the Anglo-Saxon world pro-
bability was also neglected by applied
mathematicians.

The second barrier is that with the
explosion of science, it is not practical
for scientists to learn mathematics far
from that which is already known to be
applicable to their field. In the other
direction, there are also cultural barriers
to a mathematician venturing into natural
science. Rigour and depth are central to
mathematics. However, as a mathemati-
cal framework for most natural science is
only approximate, a rigorous deduction
of the consequences of the framework is
of little value. Further, use of deep mathe-
matics generally means that one is using
a long chain of logical deductions from a
good approximation to reality — often
giving a poor approximation.

Thus, while one may argue that mathe-
matics can continue to play a significant
role in natural science, whether it will is
another question.
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