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This article provides an introductory review of infla-
tion and cosmological perturbation theory. I begin by
motivating the need for an epoch of inflation during
the early stages of the radiation dominated era, and
describe how inflation is typically achieved using sca-
lar fields. Then, after an overview of linear cosmological
perturbation theory, I derive the equations governing
the perturbations, and outline the generation of scalar
and tensor perturbations during inflation. I illustrate
that slow-roll inflation naturally leads to an almost
scale-invariant spectrum of perturbations, a pre-
diction that seems to be in good agreement with the
measurements of the anisotropies of the cosmic mi-
crowave background. I describe the constraints from
the recent observations on some of the more popular
models of inflation. I conclude with a brief discussion
on the status and certain prospects of the inflationary
paradigm.
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Introduction
A major drawback of the Hot Big Bang model

THE prevailing theory about the origin and evolution of
our universe is the so-called Hot Big Bang model. The
model is based on two crucial observations: the discovery
of the expansion of the universe as characterized by the
Hubble’s law, and the existence of an exceedingly iso-
tropic and a perfectly thermal cosmic microwave back-
ground (CMB) radiation. Since the energy density of
radiation falls faster with the expansion than that of mat-
ter, these two observations immediately point to the fact
that the universe has expanded from a hot and dense early
phase, when radiation, rather than matter, was dominant.
The transition to the more recent matter-dominated epoch
occurs when the radiation density falls sufficiently low
such that the photons cease to interact with matter. The

*1 will restrict my discussion to linear perturbation theory. Considering
higher order perturbations, as is done, say, while studying non-
Gaussianities, though currently attracting a lot of attention, is beyond
the scope of this introductory review.
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CMB is nothing but the relic radiation which is reaching
us today from this epoch of decoupling. While fairly iso-
tropic, the CMB possesses small anisotropies (of about
one part in 10°), and the observed pattern of the fluctua-
tions in the CMB provides a direct snapshot of the uni-
verse at this epoch. The Hot Big Bang model has been
rather successful in predicting, say, the primordial abun-
dances of the light elements in terms of a single para-
meter, viz. the baryon-to-photon ratio, and the value
required to fit these observations matches the value that
has been arrived at independently from the structure of
the anisotropies in the CMB. Despite the success of the
Hot Big Bang model in explaining the results from differ-
ent observations, the model has a serious drawback.
Under the model, the CMB photons arriving at us today
from sufficiently widely separated directions in the sky
could not have interacted at the time of decoupling. Never-
theless, one finds that the temperature of the CMB pho-
tons reaching us from any two diametrically opposite
directions hardly differs. (For a detailed description of
the various successes and the few shortcomings of the
Hot Big Bang model, and the original references for the
different points mentioned above, I would refer the reader
to the following texts (refs 1-8).)

The scope and success of inflation

Inflation — which refers to a period of accelerated expan-
sion during the early stages of the radiation-dominated
epoch — provides a satisfactory resolution to the above-
mentioned shortcoming of the Hot Big Bang model. In
fact, in addition to offering an elegant explanation for the
extent of homogeneity and isotropy of the background
universe, inflation also provides an attractive causal
mechanism to generate the inhomogeneities superimposed
upon it. The inflationary epoch amplifies the tiny quan-
tum fluctuations present at the beginning of the epoch
and converts them into classical perturbations, which
leave their imprints as anisotropies in the CMB. These
anisotropies in turn act as seeds for the formation of the
large-scale structures that we observe at the present time
as galaxies and clusters of galaxies. With the anisotropies
in the CMB being measured to greater and greater preci-
sion, we have an unprecedented scope to test the predic-
tions of inflation. As I shall discuss, the simplest models
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of inflation driven by a single, slowly rolling scalar field,
generically predict a nearly scale-invariant spectrum of
primordial perturbations, which seems to be in good
agreement with the recent observations of the CMB. (For
a discussion on these different aspects of the inflationary
paradigm, in addition to refs (1-8), see refs (9-23) as
well.)

The organization of this review

This article presents an introductory survey of inflation
and linear cosmological perturbation theory, and is organ-
ized as follows. In the next section, I shall describe the
main shortcoming of the Hot Big Bang model, viz. the
horizon problem. Then I shall outline how inflation helps
overcome the horizon problem, and illustrate how infla-
tion can be driven with scalar fields. I shall also introduce
the concept of slow-roll inflation, and discuss the solu-
tions to the background equations for a certain class of
inflationary models in the slow-roll approximation. Next,
I shall present an overview of linear perturbation theory. I
shall explain the classification of the perturbations into
scalars, vectors and tensors, and derive the equations
governing these perturbations. I shall also discuss the beha-
viour of the scalar perturbations in a particular limit.
After describing the generation of perturbations during
inflation, I shall calculate the scalar and tensor spectra
that arise in the power law and slow-roll inflation. Then, I
shall discuss how such spectra compare with the recent
observations, and point out the constraints on some of the
more popular models of inflation. Finally, I shall con-
clude with a brief discussion on the status and some pros-
pects of the inflationary paradigm.

Conventions and notations

Before I get down to brass tacks, let me list the various
conventions and notations that I shall adopt. Unless I
mention otherwise, I shall work in (3 + 1)-dimensions,
and I shall adopt the metric signature of (+, —, —, —). While
Greek indices shall denote all the spacetime coordinates,
Latin indices shall refer to the spatial coordinates. I shall
set i = ¢ = 1, but shall display G explicitly, and define the
Planck mass to be Mp= (87G) % 1 shall express the
various quantities in terms of either the cosmic time ¢ or
the conformal time 77, as is convenient. An overdot and an
overprime shall denote differentiation with respect to the
cosmic and conformal time coordinates of the Friedmann
metric that describes the expanding universe. It is useful
to note here that, for any given function, say, f, f =
(f'la) and f = [(f"la®) — (f'd’la®)], where a is the scale
factor associated with the Friedmann metric. Lastly, since
observations indicate that the universe has a rather small
curvature, as it is usually done in the context of inflation,
I shall work with the spatially flat Friedmann model.
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A few words on the references

The different texts'™® and the variety of reviews’ > that I
have already mentioned discuss the motivations for the
inflationary scenario, the different models of inflation,
the formulation of cosmological perturbation theory, and
also how the various models compare with the recent
observations. In what follows, I shall typically refer to
one or more of these texts or reviews. | have also tried to
refer to the original papers. However, [ should stress that
these references are often representative and not neces-
sarily exhaustive.

The horizon problem

Let me begin by describing the horizon problem in the
Hot Big Bang model. Consider a spatially flat, smooth,
Friedmann universe described by line element

ds* = dr — a*(Hdx* = o*() (d7f — dx?), (D

where ¢ is the cosmic time, a(r) the scale factor, and
n=1[dt/a(t)] denotes the conformal time coordinate. In
such a background, the horizon, viz. the size of a causally
connected region, is defined as the physical radial dis-
tance travelled by a light ray from the Big Bang singularity
at + =0 up to a given time ¢. The horizon can be expressed
in terms of the scale factor a(f) as follows®’:

Wt = a(o)| %. )
0

Let me now compare the linear dimension of the forward
and the backward light cones at the time of decoupling in
the Hot Big Bang model.

If one assumes that the universe was dominated by
non-relativistic matter from the time of decoupling #ge.
until today fo, then the physical size of the region on the
last scattering surface from which we receive the CMB 1is
given by

i1 ~
¢ d7
EB ([0> [dec) = Qgec J. a(f) = 3([§ec[0 )1/3: (3)
tdec

where ag4., denotes the value of the scale factor at decoup-
ling, and I have used the fact that f, >> t4, in arriving at
the final expression. On the other hand, if I assume that
the universe was radiation dominated from the Big Bang
until the epoch of decoupling, then the linear dimension
of the horizon at decoupling turns out to be

tdec 7

EF([decz 0) = dec J. m
0

= (24 )- @)
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The ratio, say, R, of the linear dimensions of the back-
ward and the forward light cones at decoupling then
reduces to*®

3 1/3
[m)Gle) - ®

and the last equality follows from the observational fact
that £, ~ 10'° years, while #4.. ~ 10° years. In other words,
the linear dimension of the backward light cone is about
70 times larger than the forward light cone at decoupling.
Despite this, the CMB turns out to be extraordinarily iso-
tropic. This is the horizon problem.

There is another way of stating the horizon problem.
Note that the physical wavelengths associated with the
perturbations, say, Ap, always grow as the scale factor,
i.e. Ap o< a. In contrast, in a power law expansion of the
form a(r) o 14, the Hubble radius, viz. dy=H " = (é/a)™",
goes as a"?, so that we have (Ap/dy) o< a9 [I consider
the Hubble radius rather than the horizon size since, in
any power law expansion, the Hubble radius is equivalent
to the horizon up to a finite multiplicative constant. Also,
being a local quantity, the Hubble radius often proves to
be more convenient to handle than the horizon.] This im-
plies that, when ¢ <1 — a condition which applies to both
the radiation and the matter dominated epochs — the
physical wavelength grows faster than the corresponding
Hubble radius as we go back in time'. In other words, the
primordial perturbations need to be correlated on scales
much larger than the Hubble radius at sufficiently early
times in order to result in the anisotropies that we observe
in the CMB. Consequently, within the Hot Big Bang
model, any mechanism that is invoked to generate the
primordial fluctuations has to be intrinsically acausal.

R

The inflationary scenario

Actually, apart from the horizon problem, there also exist
a few other puzzles to which the Hot Big Bang model is
unable to provide a satisfactory solution. These include,
the extent to which the universe happens to be spatially
flat today (to about one part in 10%), and the unacceptable
density of relics that would have been formed when high-
energy symmetries were broken in the early universe, to
name just two. Amongst all these issues, the horizon
problem is arguably the most significant. Moreover, it so
happens that the inflationary solution to the horizon pro-
blem also aids in surmounting the other difficulties as
well*. For these reasons, I shall restrict my attention to
the horizon problem. In the following sub-sections, after
illustrating how inflation helps in overcoming the horizon
problem, I shall outline how inflation is typically achieved
with scalar fields.
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Bringing the modes inside the Hubble radius

As T discussed above, length scales of cosmological
interest today (say, 1 <Ao< 10" Mpe), enter the Hubble
radius either during the radiation or the matter dominated
epochs, and are outside the Hubble radius at earlier times.
If a causal mechanism is to be responsible for the origin
of the inhomogeneities, then, clearly, these length scales
should be inside the Hubble scales (i.e. Ap <dy) in the
very early stages of the universe. This will be possible
provided we have an epoch in the early universe during
which Jp decreases faster than the Hubble radius as we go
back in time, i.e. if we have>®

d(Jp
_EKEJ <0, (6)

which then leads to the condition that
a>0. @)

In other words, the universe needs to undergo a phase of
accelerated (inflationary) expansion during the early stages
of the radiation-dominated epoch, if a physical mecha-
nism is to account for the generation of the primordial
fluctuations.

In order to illustrate these points, in Figure 1, I have
plotted log (length), where ‘length’ denotes either the
physical wavelength of a mode or the Hubble radius,
against log a, during inflation and the radiation dominated
epochs’. For convenience, I have chosen to describe infla-
tion by the power law expansion a o 7, with g > 1. In such
a situation, while Apeca during all the epochs, the

/
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Figure 1. Evolution of physical wavelength Ap (in green) and the
Hubble radius dy (in blue) plotted as a function of the scale factor a on
a logarithmic plot during the inflationary and radiation-dominated ep-
ochs. As discussed in the text, in such a plot, the slope of the Hubble
length is much less than unity during inflation, a feature which allows
to bring around the modes inside the Hubble radius at a suitably early
time.
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Hubble length dyy behaves as a7 and o* during inflation
and radiation-dominated epochs. Evidently, all these
quantities will be described by straight lines in the above
plot. Whereas the straight lines describing the evolution
of the physical wavelengths will have a unit slope, those
describing the Hubble radius during the inflationary and
radiation-dominated epochs will have a slope of much
less than unity (say, for ¢ >> 1) and two respectively. It is
then clear from Figure 1 that, as we go back in time,
modes that leave the Hubble radius during the later ep-
ochs will not be inside the Hubble radius during the early
stages of the universe unless we have a period of infla-
tion.

How much inflation do we need?

Let us now try and understand as to how much inflation
we shall require in order to ensure that the forward light-
cone from the Big Bang to the epoch of decoupling is at
least as large as the backward light cone from today to
the epoch of decoupling, thereby resolving the horizon
problem. For simplicity, let me assume that the universe
undergoes exponential inflation, say, from time f to f
during the early stages of the radiation-dominated epoch.
Let H be the constant Hubble scale during exponential in-
flation, and 4 denote the extent by which the scale factor
increases during the inflationary epoch. For 4 >> 1, the
dominant contribution to the size of the horizon at de-
coupling arises due to the rapid expansion during infla-
tion, and 1t can be evaluated to be

laee df / 172

a, ec ec

L1 (fgee > 0) = Ao J. m: [de[ j ] A, (8)
0 f

where I have set ; ~ H!. In such a case, the ratio of the
forward and the backward lightcones at the epoch of
decoupling is given by*

L A
. E[ijz [1026j’ )

and, in arriving at the final number, I have chosen
H~ 10" GeV. Clearly, Ry~ 1, if 4 ~ 10%. Given the scale
factor, the amount of expansion that has occurred from an
initial time # to a time ¢ is usually expressed in terms of
the number of e-folds defined as follows:

N:J.dtH:In any (10)
t 4

Since InA =In(as/a;) =60, it is often said that one
requires about 60 e-folds of inflation to overcome the ho-
rizon problem. [In fact, 60 e-folds is roughly an observa-
tional upper bound which ensures that the largest scale
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today is inside the Hubble radius during the inflationary
epoch®™!. Actually, the number of e-folds needed to
resolve the horizon problem depends on the energy scale
at which inflation takes place. For instance, if inflation is
assumed to occur at a rather low energy scale of, say,
H = 10% GeV, then, even 50 e-folds will suffice to sur-
mount the horizon problem.]

Driving inflation with scalar fields

If p and p denote the energy density and pressure of the
smooth component of the matter field that is driving the
expansion, then the Einstein’s equations corresponding to
the line element in eq. (1) result in the following two
Friedmann equations for the scale factor a(¥):

H {?]p, an
a 4G
O

where, as | had mentioned, /7 = (&/a) is the Hubble para-
meter. It is clear from the second Friedmann equation
that, for a to be positive, we require that (p + 3p) <0.
Neither ordinary matter (corresponding to p=0) nor
radiation (which corresponds to p = (p/3)) satisfies this
condition. In such a situation, we need to identify another
form of matter to drive inflation.

Scalar fields, which are often encountered in various
models of high-energy physics, can easily help achieve
the necessary condition, thereby leading to inflation.
Consider a canonical scalar field, say, ¢, described by the
potential V(¢@). Such a scalar field is governed by the
action

Slg1= [d*x =g H%} @209%9) —V<¢>} : (13)

with the associated stress-energy tensor being given by

T =0490,0- 3 K%](ama%)—wm] (14)

The symmetries of the Friedmann background, viz.
homogeneity and isotropy, imply that the scalar field will
depend only on time and, hence, the resulting stress energy
tensor will be diagonal. Therefore, the energy density p
and the pressure p associated with the scalar field sim-
plify to

32
) =p= Hﬂmm},

(15)
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(16)

2
1) =—p8) =~ W] V(¢>}Sl

Moreover, from eq. (13), one can arrive at the following
equation of motion for the scalar field ¢ in the Friedmann
universe:
¢+3Hp+V,=0. a7
where V= (dV/d¢). From the above expressions for p
and p, one finds that the condition for inflation, viz.
(p+ 3p) <0, reduces to
§ <V (9. (18)
In other words, inflation can be achieved if the potential
energy of the scalar field dominates its kinetic energy.
Given a V(@) that is motivated by a high-energy model,
the first Friedmann equation (eq. (11)) and eq. (17) that
governs the evolution of the scalar field have to be con-
sistently solved for scale factor and the scalar field, with
suitable initial conditions. However, using eqs (15) and
(16) for the energy density and pressure associated with the

scalar field, the Friedmann equations (11) and (12) can be
rewritten as

w5l
L)

where, for convenience, I have set (87G) =My, as
defined earlier. These two equations can then be com-
bined to express the scalar field and potential parametri-
cally in terms of the cosmic time 7 as follows™":

(19)

(20)

9(0) =~2My [d1J=1D), @D
V(t)y=M}BH?+H). (22)

If we know the scale factor a(z), these two equations
allow us to ‘reverse engineer’ the potential from which
such a scale factor can arise. Using this procedure, I shall
now ‘reconstruct’ the potentials of two commonly con-
sidered models of inflation.

Consider the power law expansion

a(t) = ayt’, (23)
with ¢ > 1 corresponding to inflation, @; being an arbitrary
constant. On substituting this scale factor in eq. (21) and,
upon integration, one can immediately show that the sca-
lar field evolves as
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@4

(58] )

where V7, is a constant of integration. The potential that
leads to such a behaviour can then be obtained using
eq. (22), and the above expressions for a(¢) and ¢(#). It is
found to be**:

ool i)

In a similar fashion, it is straightforward to establish that
the potential

~ . K'2 MP 2 ¢ —K
V)= T M%){l—[;}[Tj 1[M—P] . (26)

where T'=/Q2ox) and & =[4(1- )/f], leads to the fol-
lowing behaviour for a(f):

(25)

a(t) = ay exp(at?, 27)

with >0 and 0 < <1, and @ is again some arbitrary
constant. Since this scale factor grows faster than the
power law inflation, but slower than exponential expan-
sion, it is referred to as intermediate inflation®***.

Slow roll inflation

The condition given in eq. (18), viz. that the potential en-
ergy of the inflaton dominates the kinetic energy, is nec-
essary for inflation to take place. [It is common to refer to
the scalar field that drives inflation as the ‘inflaton’.]
However, inflation is guaranteed, if the field rolls slowly
down the potential such that

P <V (@). 28)
Moreover, it can be ensured that the field is slowly roll-
ing for a sufficiently long time (to achieve the required
60 or so e-folds of inflation), provided

¢ < (3H@). 29)
These two conditions lead to the slow-roll approxima-
tion®* ¥, which, as we shall see, allows one to construct
analytical solutions, both for the background and the per-
turbations. The approximation is usually described in
terms of what are referred to as the slow-roll parameters.
Two types of slow-roll parameters — the potential slow-
roll parameters and the Hubble slow-roll parameters — are
often considered in the literature [Though, I should add

that, nowadays, it seems to be more common to use the
following hierarchy of Hubble flow functions®®*:
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goz[]—]{;j and & E[dgljlfgiq fori =0,

with H~ being the Hubble parameter evaluated at some
given time during inflation.] I shall describe these two
sets of parameters below, and discuss the solutions for
the inflaton and the scale factor for a particular class of
potentials in the slow-roll approximation.

The potential slow-roll parameters: When provided
with a potential J{(¢), the potential slow-roll approxima-
tion corresponds to requiring the following two dimen-
sionless parameters™ " :

M2V Y v,
P o)

where V= (@*V/d¢), to be small when compared to
unity. The two quantities & and 7, are referred to as the
potential slow-roll (PSR) parameters. It is straightforward
to show that neglecting the kinetic energy term (¢%/2) in
the Friedmann eq. (19) and the acceleration term ¢ in the
equation of motion (eq. (17)) for the scalar field is
equivalent to the smallness of these parameters. However,
it should be emphasized that the converse is not true. The
smallness of the PSR parameters is only a necessary con-
dition, and 1t is not sufficient to ensure that these terms
can indeed be ignored. The reason being that the PSR pa-
rameters only restrict the form of the potential, and not
the dynamics of the solutions. Even if & and 75, are
small, there is no assurance that inflation will take place
since the value of ¢ can be as large as possible. There-
fore, in addition to the two PSR parameters being small,
the slow-roll approximation actually requires the addi-
tional condition that the scalar field is moving slowly
along the attractor solution determined by the equation:
(BH @) = —Vs (for a detailed discussion on this point, see
Liddle ez al.*?).

In spite of this shortcoming, the PSR parameters often
prove to be handy. For instance, given a potential, they
immediately allow us to determine the domains and para-
meters of the potential that can lead to inflation. I shall
now discuss two examples to illustrate the utility of these
parameters. Consider potentials of the form™":

(30)

Vig)= Vo™, 3D

where 17 1s a constant and » > 0. Let us restrict ourselves
to the region ¢ > 0, wherein V(¢) is positive for all n. It is
straightforward to show that the slow-roll conditions (viz.
(&, ny) << 1) are satisfied when ¢ is much greater than
Mp. Since inflation occurs for such large values of the
field, these potentials are often classified as ‘large field’
models®. Now, consider the following potential which
describes the pseudo-Nambu—Goldstone boson
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V(#) = Al1 + cos(¢/ /)], (32)
where A and f are constants that characterize the depth
and the width of the potential. This potential ‘naturally’
leads to inflation for values of the field that are small
when compared to the Planck scale™. Hence, such models
are usually referred to as “small field” models.

The Hubble slow-roll parameters: The Hubble slow-roll
(HSR) parameters turn out to be a better choice to des-
cribe the slow-roll approximation than the PSR parame-
ters, since they do not require any additional conditions
to be satisfied for the approximation to be valid. The
HSR parameters are called so, since they are defined in
terms of the Hubble parameter /, which is treated as a
function of the scalar field ¢ (ref. 36). In such a case, we
can write eq. (20) as

¢ =—-(Q2Mg)H,, (33)
where Hy= (df{/d¢). This expression can then be used to
rewrite the first Friedmann equation (eq. (19)) as follows:

o3[V
2 2m2 2ME )

a relation that 1s referred to as the Hamilton—Jacobi for-
mulation of inflation®.

Taking H(¢) to be the primary quantity, the dimen-
sionless HSR parameters & and dy are defined as fol-
lows™:

(34)

2
&y = (2M§)[%] and 8y = (2M§)[%}, (35)

where H 4= (d°H/d¢). Using eqs (17), (33) and (34),
these two parameters can be written as

{B)

AN &
O __[H_¢']_8H {2}1};{]’

where p is the energy density associated with the scalar
field. The following points are clear from these expres-
sions. Firstly, & <<1 is precisely the condition required
for neglecting the kinetic energy term in the total energy
of the scalar field. Secondly, the limit dg << 1 corre-
sponds to the situation wherein the acceleration term of
the scalar field can be ignored in eq. (17) when compared
to the term involving the velocity. Finally, the inflation-
ary condition @ > O exactly corresponds to g; < 1.

(36)

37
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It should again be emphasized that, since the smallness
of the HSR parameters ensure that ¢ is small, the HSR
approximation implies the PSR approximation. But, the
converse does not hold without assuming the constraint
that the inflation is already on the attractor™.

Solutions in the slow-roll approximation: Note that the
equation of motion of the scalar field (eq. (17)) and the
first Friedmann equation (eq. (19)) can be written in
terms of the two HSR parameters as

()]s
(%) -5

The slow-roll approximation corresponds to the situation
wherein the HSR parameters & and &y satisfy the follow-
ing conditions:

(38)

(39)

gy <1, Oy <1 and O[e7, 62, (exdn)] < &y (40)
At the leading order in the slow-roll approximation, eqs
(38) and (39) above reduce to

H? = [WLZ] and  (3H§) = V. (41)
P

Being first-order differential equations, given a potential,
these equations can be easily integrated to obtain the
solutions to the scale factor and the scalar field in the
slow-roll limit. Let me now discuss the solutions in this
limit to the large field models (eq. (31)) that I had con-
sidered earlier.

For the potential given in eq. (31), when n # 4, in the
slow-roll limit, the solution to the scalar field is given
py®18

P2 (1) = -2y \/Zz [n(nT_ZD} My (t—1), (42)

whereas when » = 4, one finds that

P(1) = ¢, exp —[J(Vo/3(AMp)(t - 1,)]. (43)
and, in both these solutions, ¢; is a constant that denotes
the value of the scalar field at some initial time #;. For all
n, the scale factor can be expressed in terms of these so-
lutions for the scalar field as follows:

1
alt) = exp{[anZ)(W(t)—@z)}, (44)
P
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with a; being the value of the scalar factor at ¢, It 1s also
useful to note that, in the slow-roll limit, eq. (41) allows
us to express the number of e-folds from ¢, to ¢ during in-
flation as

a) 1V\e (Vv
N:ln[a—ijzgdzﬁz—[M—%Mw[Z],

where the upper limit ¢ is the value of the scalar field at
the time ¢. In terms of e-folds, for the large field models,
the scalar field and the Hubble parameter are given by

(45)

¢*(N) = [¢7 —QMzn)N],
~ VOM(n—Z) ¢1 2
HZ(N)_[%]“MPJ —(2nN)

Essential linear, cosmological perturbation
theory

(46)

(n/2)

(47)

Though the inflationary scenario was originally proposed
to resolve the different puzzles related to the smooth
background, it was soon realized that it also offers a sim-
ple mechanism to generate the primordial perturbations.
Before I turn to demonstrating how inflation produces
these inhomogeneities, 1 shall provide an overview of
essential cosmological perturbation theory. (As I had
mentioned, I will restrict myself to linear perturbations.)
In what follows, after a discussion on the classification of
the perturbations into scalars, vectors and tensors, | shall
derive the equations governing these perturbations. Since
the scalar perturbations are primarily responsible for the
anisotropies in the CMB and the formation of structures, 1
shall also briefly highlight the evolution of these pertur-
bations at super-Hubble scales during the radiation and
matter-dominated epochs.

Classification of the perturbations

CMB observations indicate that the anisotropies at the
epoch of decoupling are rather small (one part in 10°, as I
had mentioned). If so, the amplitude of the deviations
from homogeneity will be even smaller at earlier epochs.
This suggests that the generation and evolution of the
perturbations (until structures begin to form late in the
matter-dominated epoch), can be studied using linear per-
turbation theory.

In a Friedmann background, the metric perturbations
can be decomposed according to their behaviour under
local rotation of the spatial coordinates on hypersurfaces
of constant time. This property leads to the classification
of the perturbations as scalars, vectors and tensors™".
Scalar perturbations remain invariant under rotations
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(and, hence, can be said to have zero spin). As we shall
see, these are the principal perturbations that are respon-
sible for the anisotropies and inhomogeneities in the uni-
verse. Vector and tensor perturbations — as their names
indicate — transform as vectors and tensors do under rota-
tions (and, as a result, have spins of unity and two respec-
tively). The vector perturbations are generated by
rotational velocity fields and, therefore, are also referred
to as the vorticity modes. Finally, the tensor perturbations
describe gravitational waves, and it is important to note
that they can exist even in the absence of sources™*.

The number of independent scalar, vector and tensor de-
grees of freedom: Let us now carry out the exercise of
counting the number of degrees of freedom associated
with these different types of perturbations'. To highlight
the counting procedure, in this sub-section, I shall, in
fact, work in arbitrary spacetime dimensions. In (D + 1)-
dimensions, the metric tensor, being symmetric, has
[(D+ 1)(D + 2)/2] degrees of freedom. However, not all
of these degrees are independent since there exist (D + 1)
degrees of freedom associated with the coordinate trans-
formations. If we eliminate these degrees, we are left
with a total of [D(D + 1)/2] independent degrees of free-
dom describing the metric perturbations. These degrees
of freedom contain the scalar, vector and tensor perturba-
tions.

Let dg,, denote the metric perturbations in the Fried-
mann universe. The perturbed metric can be split as fol-
lows:

§gyv = (800, Igoi» 5gij)- 41
Since it contains no running index, evidently, the pertur-
bation dggo = A, say, is a scalar. As is well known, one
can always decompose a vector into a gradient of a scalar
and a vector that is divergence-free. Hence, we can write
9go; as

0goi= (ViB+S), (49)
where B is a scalar, while S; i1s a vector that 1s diver-
gence-free, i.e. (V,8)=0. A similar decomposition can
be carried for the quantity dg; by essentially repeating the
above analysis on each of the two indices. Therefore, the
quantity dg; can be decomposed as

0gy = Yoy + (V.J; + V7)),

+ H%(vivj +V V) - Gj 5, V2 ]5} +H,  (50)

where yand € are scalar functions, F; — like S; above — is
a divergence-free vector, and H; is a symmetric, traceless
and transverse tensor that satisfies the conditions 7/ =0
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and (V;HY)=0. Let me again count the degrees of free-
dom of the perturbed metric tensor through the various
functions that I have introduced. To describe dg,., we re-
quire the scalars A, B, ¥ and &, amounting to four de-
grees of freedom. We also need the two divergence-free
spatial vectors S; and F; that add up to [2(D - 1)] de-
grees. Moreover, after we impose the traceless and trans-
verse conditions, the tensor H; has

[D(D+l)}_(D+D:[(D+l)(D—2)}

2 5 D

degrees of freedom. Upon adding all these scalar, vector
and tensor degrees, 1 obtain

4+2(D_1)+[(D+1)(D—2)}:[(D+l)(D+2)

2 2 } (52)

which, as I discussed above, are the total number of
degrees of freedom associated with the perturbed metric
in (D + 1)-dimensions.

In the same fashion, let me decompose the degrees of
freedom associated with the coordinate transformations.
In a Friedmann background, the (D + 1) coordinate trans-
formations that relate different coordinate systems which
describe the perturbed metric can be expressed in terms
of scalars, say, d¢ and Jx, as follows:

t— (+6H and x' — [x' + V()] (53)
Similarly, one can construct coordinate transformations
in terms of a divergence-free vector, say, &, as

t—t and x — (x'+ x). (54)
(It should be emphasized that these coordinate transfor-
mations are of a particular form, and are not completely
arbitrary. The form of these transformations is dictated by
the fact that the difference between the coordinates is
determined by the amplitude of the perturbations. In other
words, it is a gauge transformation. I shall somewhat
elaborate on this point below.) There is no further coordi-
nate degrees of freedom associated with the tensor per-
turbations. The two scalar quantities d¢ and Sx, and the
divergence free vector dx’, constitute the [2 + (D —1)] =
(D + 1) degrees of freedom associated with the coordi-
nate transformations.

Let me now subtract the coordinate degrees of freedom
from the total degrees to arrive at the independent num-
ber of scalar, vector and tensor degrees of freedom. Four
scalar functions, viz. (A, B, ¥, £), were required to de-
scribe the perturbed metric tensor dg,,. But, there also
exist two scalar degrees of freedom associated with one’s
choice of coordinates, i.e. 8¢ and Jx. Hence, the actual
number of independent scalar degrees of freedom is
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(4 -2)=2. And, it is useful to notice that this is true in
arbitrary spacetime dimensions. | needed two divergence-
free vector functions, §; and F;, amounting to a total of
[2(D — 1)] degrees of freedom, to describe the perturbed
metric tensor. If we subtract the (D — 1) vector degrees of
freedom corresponding to the coordinate transformations
that can be achieved through &’ from this number, one is
left with 2(D-1)]—-(D-1)=(D-1) true vector de-
grees of freedom. As I have already pointed out, the ten-
sor perturbations contain [(D + 1) (D —2)/2] independent
degrees of freedom. Upon adding these, I obtain that

(55)

2+(D_1)+[(D+1)(D—2)}:[D(DH)}’

2 2

which is the total number of independent degrees of free-
dom describing the perturbed metric tensor.

Note that, in the (3 + 1)-dimensional case of our inter-
est, there exists two each of the scalar, vector and tensor
degrees of freedom.

The decomposition theorem: 1 have focused above on
decomposing the perturbed metric tensor into different
types of perturbations. Let me now discuss the equivalent
classification of the source of the metric perturbations,
viz. the stress—energy tensor. Since the stress—energy ten-
sor is a symmetric two tensor just as the metric tensor is,
the perturbed stress energy tensor can also be classified
as the scalar, vector and tensor components. For instance,
while the perturbed inflaton and perfect fluids — such as
radiation and matter — are scalar sources, velocity fields
with vorticity are, evidently, vector sources. Anisotropic
stresses, when the possible scalar and vector contribu-
tions have been eliminated, constitute a tensor source.

Given the perturbed metric tensor 8g,,. the correspon-
ding Einstein tensor, say, 6G,,, can immediately be calcu-
lated at the same order in the perturbations. The Einstein
equations that relate the perturbed Einstein tensor to the
perturbed stress—energy tensor, say, 7,,, will then lead
to the equations governing the perturbations. According
to the decomposition theorem’, which I shall use with-
out proof, at the linear order in the perturbations, the sca-
lar, vector and tensor perturbations decouple and, hence,
they can be analysed separately. In other words, each
type of metric perturbation is affected by only the same
type of source. Therefore, the three types of perturbation
can be studied independent of each other.

Gauges: The Friedmann line element (eq. (1)) describes
the expanding universe in the frame of a comoving ob-
server. The comoving observer is special since, it is with
respect to such an observer that the universe appears homo-
geneous and isotropic. However, there is no such
uniquely preferred frame of reference in the presence of
perturbations. A variety of coordinate choices are possi-
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ble, with the only requirement being that the metric and
the coordinates reduce to the standard Friedmann line
element in the limit when the perturbations vanish. As a
result, the difference between the various coordinates
have the same amplitude as the perturbations themselves.
A particular choice of coordinates is called a gauge. If
one changes the coordinate system, one would obtain an-
other metric, i.e. a different gauge. The transformation
from one gauge to another (such as eqs (53) and (54)) is
referred to as a gauge transformation. There exist two ap-
proaches to studying the evolution of the perturbations.
Either one constructs gauge-invariant quantities, or chooses
a particular gauge and works in the specific gauge
throughout. Being simpler and more wieldy, I shall adopt
the latter approach.

Scalar perturbations

I shall now turn to deriving the equations of motion gov-
erning the three different types of perturbation. Let me
first consider the case of the scalar perturbations.

The longitudinal gauge and the perturbed Einstein ten-
sor: As mentioned above, I shall work in a particular
gauge to describe the various perturbations. A convenient
gauge to describe the scalar perturbations is the longitu-
dinal gauge. If we take into account the scalar perturba-
tions to the background metric, i.e. eq. (1), then in this
gauge, the Friedmann line element is given by
ds? = (1 +20)dF* — a*()(1 - 2¥)dx?, (56)
where @ and ¥ are the two independent functions that
describe the perturbations. (Note that this choice of gauge
corresponds to A o< @, oW and B=E=0.) At the lin-
ear order in the perturbations, the components of the per-
turbed Einstein tensor, viz. 8GY, corresponding to the
line element, i.e. eq. (56) above can be evaluated to be*

5GY =—6H (¥ + HD) + [%} Vi, o7
a
5GP =2V,(¥ + HD), (58)
5G :—2{‘1*+H(3‘I‘+®)+(2H+3H2)®
1 2 i 1 i
H—5 |V*D |8 +| = |V'V,D. (59)

where D = (® — V).

Equations of motion: The only sources of perturbations
that I shall consider in this review will be scalar fields
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and perfect fluids. As I shall illustrate in the next section,
scalar fields do not possess any anisotropic stress at the
linear order in the perturbations. I shall assume that the
perfect fluids that I consider do not contain any anisot-
ropic stresses either. Under these conditions, the per-
turbed stress-energy tensor associated with such sources
can be expressed as follows:

8Ty =8p, 8T =(V,60) and ST} =-6 pdi, (60)
where dp, do and Jp are the scalar quantities that denote
the perturbations in the energy density, momentum flux,
and pressure respectively. The first-order Einstein’s equa-
tions, viz. 8GY = (87xG)ST} | then lead to the required set
of equations governing the perturbations. It is clear from
the form of 5G} above that, in the absence of anisotropic
stresses, the corresponding Einstein equation leads to:
@ =Y. In such a case, the remaining three Finstein equa-
tions simplify to™:

“3H (b +HD)+ [szvzob = (47G)ép, 61)
a

V,(d+ HD) = (47G)(V,50), (62)

b+ 4HD + (2H +3H)D = (47G)Sp . (63)

The first and the third of these Einstein equations can be
combined to lead to the following differential equation
for the Bardeen potential @ (refs 11 and 43):

O +3H(1+c2)D — V2D

+2H + (14 3c2 YH? 1@ = (4nGa?)opN4, (64)
where H = (a'/a) 1s the conformal Hubble parameter. In
arriving at the above equation, I have changed over to the
conformal time coordinate, and have made use of the
standard relation®’

Sp=(cidp+dp™), (63)
where ¢% = (p’/p’) denotes the adiabatic speed of the per-
turbations, and dp™* represents the non-adiabatic pressure
perturbation.

A conserved quantity at super-Hubble scales: Consider
the following combination of the Bardeen potential @ and
its time derivative®!!- "%

<o (122

66
3H p+p (66)

a quantity that is referred to as the curvature perturbation
[1t is called so since it is proportional to the local three
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curvature on the spatial hypersurface'™'.] Upon substi-

tuting this expression in eq. (64) that describes the evolu-
tion of the potential ®@, and making use of the background
equations, i.e. eqs (11) and (12), one obtains that, in Fou-
rier space,

H:-H

(Henceforth, the subscript & shall refer to the wavenum-
ber of the Fourier modes of the perturbations.) Note that
at super-Hubble scales, wherein the physical wavelengths
of the perturbations are much larger than the Hubble
radius (i.e. when (klaH) = (k/'H) << 1), the term (cik*®,)
can be neglected. If one further assumes that no non-
adiabatic pressure perturbations are present (i.e. ™ =0),
say, as in the case of ideal fluids, then the above equation
implies that R/ =0 at super-Hubble scales. In other
words, when the perturbations are adiabatic, the curvature
perturbation R; in conserved when the modes are well
outside the Hubble radius.

Evolution of the Bardeen potential at super-Hubble
scales: Letus now make use of the conservation of cur-
vature perturbation to understand how the Bardeen poten-
tial evolves at super-Hubble scales during the radiation
and matter dominated eras. If I now define®'"'®

® = (H/a*0) U, (68)
where
) 1/2
0= Hi , (69)
(H? —Ha?

then, I find that, in Fourier space, eq. (64) that governs
the Bardeen potential reduces to

7 4
u,;’{cg\kz —[%ﬂuk - [L(;;’ ‘9]5;7}{%.

In the absence of non-adiabatic pressure perturbations
(i.e. when 8p™* =0), the above differential equation for
U, simplifies to

uy+ {cf\kz —[%ﬂuk =0.

And, in the super-Hubble limit, say, as £ — O, the general
solution to this differential equation can be written as®'®

(70)

(71)

n .
Uy () = Co (kYO | d’; +Cp ()O(), (72)

&> (1)
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where the coefficients Cs and Cp are k-dependent con-
stants that are determined by the initial conditions im-
posed at early times. The corresponding Bardeen
potential @, is then given by

n d#i
Oy () = Cg (k)[affm] g 7€ (k)[azi(m] 73

Consider the power law expansion (eq. (23)) that we
had discussed earlier. Such an expansion can be expressed
in terms of the conformal time coordinate as follows:

a(m) = (=Hm*, (74)
where yand H are constants given by
2¢g -1 _
y = —[%j and H=[(g-Da"]. (75)

In addition to power law inflation (which corresponds to
g > 1), the above scale factor describes the radiation and
matter-dominated epochs (corresponding to g = (1/2) and
(2/3) respectively) as well. During inflation, y< -2, with
y=-2 corresponding to exponential inflation (i.e.
q — o). While y=0 in the case of the radiation-dominated
epoch, ¥=1 during matter-domination. Moreover, note
that the quantity 7 is positive and —o < 7<0 during
inflation, whereas, during radiation and matter domina-
tion, H is negative and 0 < 77 < oo. It is helpful to notice
that in all these instances, #— O corresponds to the
super-Hubble limit.

In the background described by eq. (74), the quantity &
that is defined in eq. (69) is found to be

o= ()
P=\v+2) \atm)

so that, at super-Hubble scales, one has [cf. eq. (73)]

(76)

3w+5

CD’{(”):CGUC)[M}CD(@{ 2/Bw+1) }

ROl pr+3)
(77)

where w is the following equation-of-state parameter:

w=@/p)=[10-pnBd+yl

that is a constant in power law expansion. The first term
in the above expression for @, denotes the growing mode
(which is actually a constant), while the second term
represents the decaying mode. (Hence, the choice of sub-
scripts G and D to the coefficient C.) Demanding finite-
ness at very early times implies that the decaying mode
has to be neglected, so that, at super-Hubble scales, |
have'®

(78)
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<Dk<n>:cg<k>[3(w“)]

3w+5 (79
This quantity vanishes when w =—1, which corresponds
to exponential expansion driven by the cosmological con-
stant. Therefore, it is often said that the cosmological
constant does not induce any metric perturbations.

Since @, is a constant at super-Hubble scales, in this

limit, the curvature perturbation Ry [cf. eq. (66)] is given
by

3w+5
Ry = [m} O, =Cq k),

(80)
where I have made use of eq. (79) for @;. As Ry is con-
served and @ is a constant at super-Hubble scales in
power law expansion, when the modes enter the Hubble
radius during the radiation or matter-dominated epochs,
the Bardeen potentials at entry are given by

[ 3wg + D) (2

®F = [m} P = (?jCG ®. (81
_ 3(WM +1) _ 3

Dt = [73%\4 3 } Ry = (gjcc (k. (82)

where I have made use of the fact that wg = (1/3) and
wy =0. These expressions also imply that, at super-
Hubble scales, @, changes by a factor of (9/10) during the
transition from radiation to matter-dominated epoch™".

It is essentially the spectrum of the Bardeen potential
when the modes enter the Hubble radius during the radia-
tion and matter-dominated epochs that determines the
pattern of anisotropies in the CMB and the structure of
the universe at the largest scales that we observe
today™"®. The quantity C(k) that determines such a spec-
trum has to be arrived at by solving eq. (70) exactly with
suitable initial conditions imposed in the early universe.
In the inflationary scenario, physically well-motivated,
quantum, initial conditions are imposed on the modes
when they are deep inside the Hubble radius. As I shall
illustrate in the following section, under these conditions,
it is the background dynamics during the inflationary
regime that influences the functional form of Cg(k).

Vector perturbations

As I had done in the case of the scalar perturbations, I
shall work in a particular gauge to describe the vector
perturbations as well. I shall choose a gauge wherein the
Friedmann metric, when the vector perturbations have
been included, is described by the line element®™®

ds? = A — a*()[ 8y + (V. + V,F)]dx'dx’ (83)
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(This corresponds to setting S; to zero and choosing
F;oc F;) In such a gauge, upon using the condition that F;
is a divergence-free vector, the different components of
the perturbed Einstein tensor are found to be

5G2 =0, 5GP = [%j (V2E), (84)

5Gi = —Gj [BH(V,E; +V ,F)+ (V. E; +V )] (85)

In the absence of any vector sources, according to the
first-order Einstein’s equations, the non-zero components
OG? and &G} have to be equated to zero. These then
immediately imply that the metric perturbation F; van-
ishes identically. In other words, no vector perturbations
are generated in the absence of sources with vorticity®*.

Tensor perturbations

Let us now turn to the case of the tensor perturbations.
Upon the inclusion of these perturbations, the Friedmann
metric can be described by the line element®™®

ds® = dr* — & (1)(5; + hy)dx'dy, (86)
where h;; is a symmetric, transverse and traceless tensor.
(Note that Ay oc ‘H,;-) As I had discussed, the transverse
and traceless conditions reduce the number of independ-
ent degrees of freedom of 4; to two. These two degrees
correspond to the two types of polarization associated
with the gravitational waves. It can be shown that, on im-
posing the transverse and the traceless conditions, the
components of the perturbed Einstein tensor correspond-
ing to the above line element simplify to®

5GY =5GP =0,

5Gt = —(%j[h;j +3Hh,; - (;—Zjv%j].

In the absence of anisotropic stresses, one then arrives at
the following differential equation describing the ampli-
tude / of the gravitational waves®®:

(87)

(88)

W+ 2HK —V*h =0, (89)

where, for later use, I have expressed the equation in
terms of the conformal time coordinate.

Generation of perturbations during inflation

As I have repeatedly pointed out, the striking feature of
inflation is the fact that it provides a natural mechanism
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to generate the perturbations® >, It is the quantum fluc-
tuations associated with the inflaton that act as the pri-
mordial seeds for the inhomogeneities. I had earlier
alluded to the fact that it is the spectrum of the Bardeen
potential that determines the pattern of the anisotropies in
the CMB and the formation of structures. Since the cur-
vature perturbation is proportional to the Bardeen poten-
tial at super-Hubble scales (cf. eq. (80)), the primary
quantity of interest is the spectrum of curvature perturba-
tions generated during inflation. The inflaton being a scalar
source, does not degenerate any vector perturbations’®.
However, as I have discussed, gravitational waves are
generated even in the absence of sources™ ' The pri-
mordial gravitational waves are also important because
they too leave their own distinct imprints on the CMB>™*.
In this section, I shall first obtain the equation of motion
governing the curvature perturbation when the universe is
dominated by the inflaton. I shall then quantize the curva-
ture and the tensor perturbations, impose vacuum initial
conditions, and evaluate the scalar and the tensor spectra
in super-Hubble limit for the cases of power law and
slow-roll inflation.

Equation of motion for the curvature perturbation

As before, let ¢ denote the homogeneous scalar field.
Also, let 8¢ denote the perturbation in the field. It is then
straightforward to show that, in the metric (56), the com-
ponents of the perturbed stress—energy tensor (cf. eqs
(14) and (60)) associated with the scalar field can be ex-
pressed as

ST = (98¢ — > D +V,80) = dp, (90)
ST =V,;(pé¢) =V, (d0), oD
5T} = ~(¢8p— §*® ~V,80)8: = ~SpSi. (92)

Evidently, the scalar field does not possess any anisot-
ropic stress. As a result, ® =¥ during inflation. On sub-
stituting the above expressions for dp, do and dp in the
first-order Einstein equations (eqs (61)—(63)) governing
the scalar perturbations, one can arrive at following equa-
tion for the Bardeen potential:

D"+ 3H(1+c2)D — 2 V2D

+ 2H +(1+3c2H?* D = (1-ci V3. (93)
Upon comparing this equation for @ with eq. (64), it is
evident that the non-adiabatic pressure perturbation asso-
ciated with the inflaton is given by

)
SpNa = [li}vzcb. (94)

AnGa*
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In such a case, eq. (67) that describes the evolution of the
curvature perturbation simplifies to

, H
R{ = _[Wj (K2D,).

On differentiating this equation again with respect to time
and, on using the background equations, i.e. eqs (19) and
(20), the definition (66) and the Bardeen equation (i.e. eq.
(93)), one obtains the following equation of motion gov-
erning the Fourier modes of the curvature perturbation
induced by the scalar field®*:

(95)

R+ 2[ ij +E2R, = (96)
where the quantity z is given by
z=(ad/H) = (ag’IH). o7

It 1s useful to introduce the Mukhanov—Sasaki variable

v that is defined as>>*

v=(Rz). (98)

The Fourier modes of this variable, say, v, satisfy the
differential equation

g+ {kz —[%ﬂvk =0.

Quantization of perturbations and definition of the
power spectra

(99)

On quantization, the homogeneity of the Friedmann
background allows us to express the curvature perturba-
tion R in terms of the Fourier modes R, (satisfying eq.
(96)) as follows':

e Ry (e + &l Ry (e ],

Rm.x = [ (100)

(2 )3/2

where the creation and the annihilation operators g, and
4 obey the standard commutation relations. At the lin-
ear order in the perturbation theory that I am working in,
the power spectrum as well as the statistical properties of
the scalar perturbations are entirely characterized by the
two-point function of the quantum field R. (This is why
the perturbations generated by inflation are often termed
as Gaussian. However, basically, this happens to be true
since we are restricting ourselves to the linear order in
perturbation theory. I shall briefly comment on possible
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deviations from Gaussianity in the final section.) The
power spectrum of the scalar perturbations, say, R, (k), is
given by the relation

jkmc) jSde("—"«)mm DR X)|0)

xexp —ik-(x—x")], (101)
where |0) is the vacuum state defined as 4,|0)=0Vk
Using the decomposition (100), the scalar perturbation
spectrum can then be obtained as®

IS (B (1Y
{2 (2520

The expression on the right-hand side is to be evaluated
at super-Hubble scales (i.e. when (klaH) = (k/'H) << 1]
when the curvature perturbation approaches a constant
value. [Earlier, I had illustrated that, if the non-adiabatic
pressure perturbation &p™* can be neglected, the curva-
ture perturbation is conserved at super-Hubble scales. It
can be shown that the non-adiabatic pressure perturbation
associated with the inflaton (cf. eq. (94)) decays exponen-
tially at super-Hubble scales and, hence, can be igno-
red®>°. As a matter of fact, it is for this reason that the
scalar perturbations produced by single scalar fields are
usually referred to as adiabatic. ]

The tensor perturbations can be quantized in a similar
fashion as the curvature perturbation, and the correspond-
ing spectrum can also be defined in the same way. If we
write i = (u/a), then, in Fourier space, eq. (89) describing
the tensor perturbations reduces to

uy + {kz —[%ﬂuk =0.

And, it is helpful to note that this equation is essentially
the same as the Mukhanov—Sasaki (eq. (99)) with the
quantity z replaced by the scale factor a. The tensor per-
turbation spectrum, say, Pr(k), can then be expressed in
terms of the modes A, and u; as follows:

a )l
Prlk) = 2[27[ ]|hk|2 [W]{ : ]

with the expressions on the right-hand side to be evalu-
ated in the super-Hubble limit, as in the scalar case. The
additional factor of two in the above tensor spectrum has
been included to take into account the two states of
polarization of the gravitational waves.

The scalar and the tensor spectral indices are defined

20
as

(102)

(103)

(104)

CURRENT SCIENCE, VOL. 97, NO. 6, 25 SEPTEMBER 2009



SPECIAL SECTION: ASTRONOMY

L o_qa (4R o (din7y
s dlnk T dnk )

Notice the difference in the definition of these two quan-
tities. Conventionally, a scale-invariant scalar spectrum
corresponds to ny; =1, while such a tensor spectrum is
described by nr = 0. Finally, the tensor-to-scalar ratio r is
defined as follows™":

(105)

(106)

r(k)E[PT(k)j.

Fi(k)

As I shall discuss below, the scalar spectral index ng and
the tensor-to-scalar ratio » happen to be important infla-
tionary parameters that can be constrained by the obser-
vations.

The Bunch—Davies initial conditions

As I have mentioned, during inflation, the initial condi-
tions on the perturbations are imposed when the modes
are well inside the Hubble scale (i.e. when (k/aH)=
(k/H)>> 1]. It is clear from eqs (99) and (103) that, in
such a sub-Hubble limit, the scalar and tensor modes v,
and u; do not feel the curvature of the spacetime and,
hence, the solutions to these modes behave in the follow-
ing Minkowskian form: ¢* ®”. The assumption that the
scalar and tensor perturbations are in the vacuum state
then requires that v, and u; are positive frequency modes
at sub-Hubble scales, i.e. they have the asymptotic
form™>®

m (v (7). 1, (7)) [#]e-i’"i. (107)

(KH)—eo N2k

It should be pointed out that the vacuum state associated

with the modes that exhibit such a behaviour is often

referred to in the literature as the Bunch-Davies vac-
60

uum’.

The scalar and the tensor power spectra in power
law and slow-roll inflation

In this section, my main goal will be to arrive at the sca-
lar and tensor perturbation spectra in slow-roll inflation.
However, deriving the perturbation spectra in the case of
power law inflation proves to be highly instructive in un-
derstanding the computation of the slow-roll spectra.
Therefore, before I derive the spectra in slow-roll infla-
tion, I shall discuss the power law case.

The perturbation spectra in power law inflation: In
power law inflation, from eqs (23) and (24), it is clear
that
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(108)

z= [2—¢] = JQ/pMpa.

Upon using the scale factor (74), the solution to the Muk-
hanov—Sasaki equation (eq. (99)) that satisfies the initial
condition (107) is found to be®

. (109)
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0 () = [_”ﬂj ei[v+(1/2)](;z/2)H£1) (—k),
where v=—[y+ (1/2)], and HS) is the Hankel function
of the first kind and of order v. Since in such a power law
case,

(110)

evidently, the tensor mode u; will be described by the
same solution as the one for v, above. As a result, barring
an overall constant factor, the scalar and the tensor spec-
tra will be of the same form.

Upon using the series expansion of the Hankel function
in the solution (109) and eq. (74), it can readily shown
that the curvature perturbation R and the tensor ampli-
tude A, approach a constant value in the super-Hubble
limit (i.e. as (—k7) — 0), as expected. The scalar and the
tensor power spectra evaluated at super-Hubble scales
can be written as®®*

_ 2(y+2)
Pyryk) = AS(T)H2 [:) . (111)
H
The quantities As and At are given by

2
PR 2N () 012

1673 (y + 2)M 2 || 27D

Ay =| —L_|[L&F 113

T M2 |\ 2@ ) (113)

where I'(V) 1s the Gamma function and, as seems to be
the convention®®, T have included by hand, a factor of
a4/ 1%) in Ar. Clearly, the spectral indices are constants,
and are given by

050 = =20+ 2= 2. (114)

where I have made use of eq. (75). The resulting tensor-
to-scalar ratio is also a constant, and is found to be

|16y +2)| (16
<[ Y
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These results point to the fact that the scalar and tensor
spectra turn more and more scale-invariant as the scale
factor approaches exponential inflation (i.e. as g — o0).

The power spectra in slow-roll inflation: Let us now
evaluate the scalar and tensor spectra in slow-roll infla-
tion. Using eq. (20) and eq. (36) for the first Hubble
slow-roll parameter &, the quantity z defined in eq. (97)
can be written as

z :\/EMP(Q\/%)-

Also, note that eqs (36) and (37) defining the two Hubble
slow-roll parameters &; and Jdg can be expressed in terms
of the conformal time coordinate as follows:

Using these expressions for z and the HSR parameters,
the term (z”/z) that appears in the Mukhanov—Sasaki
equation (eq. (99)) can be written as'>*>%

[Z—j =2 {2—51{ + (e —5H)(3—5H)+[81/{ —% ﬂ
z H

(116)

(117)

(118)

From the definition of &; above, it can also be established
that

[%szz(z—gH). (119)
Let us now rewrite eq. (117) above for & as follows:
1 1
n=- d[—] (120)
.[[1 —gHj H

On integrating this expression by parts, and using the
above definition of &y, one obtains that

_ 1 _ 2ey (e —Oy) i
= [(1—5H)H} I{ (- }d(Hj'

At the leading order in the slow-roll approximation (cf. eq.
(40)), the second term can be ignored and, at the same or-
der, one can assume &; to be a constant. Therefore, we have

1
H‘{a—s}m]

If we now use this expression for H in eqs (118) and
(119), then, at the leading order in the slow-roll approxi-
mation, one gets

(121)

(122)
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(123)

27 (24665 38
z ) n? ’
a”\ _(3+2eq

a ) n? ’

with the slow-roll parameters treated as constants. It is
then clear from eqs (99) and (103) that the solutions to
the variables v, and u; will again be given in terms of

Hankel functions as in the power law case, i.e. eq. (109),
with the quantity vnow given by

Vg = |:[%j+2SH —éH} and vy = K%}FSH} (125)

where the subscripts S and T refer to the scalar and tensor
cases.

It now remains to evaluate the two spectra in the super-
Hubble limit. In this limit (i.e. as (—k#) — 0), upon ex-
panding the Hankel function as a series about the origin,
the scalar and the tensor spectra can be expressed as**®

_ 1 D) T (kY (ka7
7= sz oot (&) ()

2 2
TRz

(U eI (kY (Y
Pr (k) _[ szlg][m/z)} (Zj [T)

[ 2H? [0 ’ (2ve=3) (2ve-1)
_[nZMgl[m 2@ (1_ gD (127)

(124)

(126)

where H is the Hubble parameter, and the second equali-
ties express the asymptotic values in terms of the values
of the quantities at Hubble exit (i.e. at (k7)) = (1 — &) ™).
(Also, I have multiplied the tensor spectrum by the factor
of (4/M3), as 1 had mentioned earlier.) At the leading
order in the slow-roll approximation, the amplitudes of
the scalar and tensor spectra can easily be read-off from
the above expressions. They are given by®

5 2
Py(k) = [H—] , (128)
279 k=(aH)
8 \(HY
Pr(k) = [M_%] (%LW) ) (129)

with the subscripts on the right-hand side indicating that
the quantities have to be evaluated when the modes cross
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the Hubble radius. Given a quantity, say, y, we can
write®

(0., () i)
dink ),_r, a0 )\ dina \dnk ),_ ;)
#

H k=(aH)

where, in arriving at the final expression, the following
condition has been used:

[dlna] ~1
dlnk (il ’

as I does not vary much during slow-roll inflation. Using
eqs (128) and (129) for the power spectra, the definitions
of the spectral indices (eq. (105)) and eq. (130), one can
easily show that

(130)

(131)

ng =(1—-4gg +28y) and np =—Qgy). (132)
These expressions unambiguously point to the fact that
the scalar and tensor spectra that arise in slow-roll infla-
tion will be nearly scale-invariant. The tensor-to-scalar
ratio in the slow-roll limit is found to be

r=(16g&) = —(8np) (133)

with the last equality often referred to as the consistency
relation'”.

Comparison with the recent CMB observations

In this section, I shall briefly discuss how a power-law
primordial spectrum compares with the recent observa-
tions of the anisotropies in the CMB. I shall also indicate
how the observations constrain some of the models of in-
flation.

The nearly scale-invariant scalar power spectrum and
the rather small tensor-to-scalar ratio that arise in slow-
roll inflation seem to be in good agreement with the ob-
servations of the anisotropies in the CMB. In Figure 2,
the angular power spectrum of the CMB temperature ani-
sotropies corresponding to the concordant cosmological
model — viz. a spatially flat, ACDM model’, and a nearly
scale-invariant primordial spectrum — has been plotted as
a function of the multipoles. [The term ACDM model re-
fers to the currently accepted composition of our uni-
verse, viz. about 72% of dark energy, close to 23% of
cold (i.e. non-relativistic) dark matter, and roughly 5% of
baryons. These numbers have been arrived at based on a
variety of observations, including that of the CMB anisot-
ropies”®.] Figure 2 also contains data from the most re-
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cent observations of the CMB by the WMAP mission®’.
Visually, it is clear that the concordant model provides a
reasonable fit to the data. Detailed analysis of the data
indicates that ng~ 0.96, when the tensor contribution is
completely ignored. Whereas it is found that ng=~ 0.98
when tensors are taken into account. The data also con-
strain the tensor-to-scalar ratio to » <0.43 at 95% confi-
dence level (CL)%.

The slow-roll approximation also enables specific in-
flationary models to be compared easily with the observa-
tions. In order to do so, firstly, note that, in the slow-roll
limit, upon using the corresponding background equa-
tions (i.e. eq. (41)), the scalar and tensor spectral ampli-
tudes (i.e. eqs (128) and (129)) can be expressed in terms
of the potential V(@) and its derivative as follows™:

1 V3
Py (k) = [W] [W] ’
PN =)

2 V
no-( ).,

Secondly, during slow roll, the relations between the
HSR and PSR parameters can be obtained to be

(134)

(135)

gr=¢, and Oy =1, —&), (136)
and, as a result, for instance, & ~ 1 indicates the end of
inflation. Let us now use these expressions to arrive at
observational constraints on the parameters of a couple of
inflationary models.
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Figure 2. The angular power spectrum of CMB temperature aniso-
tropies from the WMAP 5-year data (the black dots with error bars) and
for the best-fit concordant model, i.e. a spatially flat, ACDM model,
with a power law primordial spectrum (the solid red curve). The blue
band denotes the statistical uncertainty, known as the cosmic vari-

ance””®. The concordant model seems to fit the data rather well (from
Hinshaw et al.%).
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Observations indicate that the amplitude of the scalar
perturbation associated with a mode that crossed the
Hubble radius about 60 e-folds before the end of inflation
is about (2 x 107), a constraint that is referred to as the
COBE normalization®. Given a potential, eqs (132)~(136)
allow us to construct the scalar amplitude and spectral in-
dex as well as the tensor-to-scalar ratio in terms of the infla-
ton. Let me now focus on the large field models (eq. (31))
discussed earlier. In these models, inflation ends (i.e. & ~ 1)
when @4 =[(#/v2)Mp]. The value of the field at N
e-folds before the end inflaton can be obtained using eq.
(46), and is given by ¢y = (JI(4N +rn)n/2]Mp). Using
these expressions, it is straightforward to show that, for
Vo= (m*2) and n =2, the COBE normalization condition
leads to the constraint that m =~ (10°Mp). Similarly, for
Vo= (A/4) and n = 4, the condition leads to A~ 107>,

The CMB observations also lead to useful constraints
on the models in the ng—r plane. The various quantities
that we have obtained above allow us to express the sca-
lar spectral index and the tensor-to-scalar ratio in terms of
the number of e-folds N counted from the end inflaton.
For the large field models, eq. (46) enables us to arrive at
the following expressions in the slow-roll limit*

2(n+2)] 16n
=]-| == d r= .
& [4N+n B Y
I have already shown that, for the case of power law in-
flation, i.e. eq. (23) described by the potential in eq. (25),
ng and r are constants given by eqs (114) and (115)
respectively. These results for the power law case were

exact. In the slow-roll limit (i.e. when ¢ >> 1), they re-
duce to®’

g :l—[gj and r:[Ej.
q q

These relations indicate that these models will be de-
scribed by straight lines in the ns—r plane. In Figure 3, the
joint constraints on the ns—r plane from the recent
WMAP data (and a couple of other datasets) have been
displayed®. The behaviour of a few inflationary models
has been included in Figure 3 as well. It is evident from
Figure 3 that, amongst the large field models, the n =2
case performs better than the n = 4 case. Also, in the case
of the power law inflation, it is found that g <60 is
excluded at more than 95% CL.

(137)

(138)

Status and prospects of inflation

I shall finally close by briefly commenting on the status
and some prospects of the inflationary paradigm.

Profusion of inflationary models

As a broad concept, inflation can certainly be considered
as a success. However, a specific model of inflation that
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can be satisfactorily embedded in a high-energy theory
still eludes us. A plethora of inflationary models exist,
quite a few of which are phenomenological in nature
[T would urge the reader to take a look at the figure 41.3
in Shellard’®, which lists the various inflationary models
that have been considered in the literature. The list is
rather long, but, apparently, it is incomplete! It tells the
tale.] Despite the enormous amount of effort, including
attempts at considering models that are not described by
the canonical action, it will be fair to say that we do not
yet have a satisfactory model. The principal hurdle facing
the idea of inflation is to construct a model that is well
motivated from the high-energy perspective, and also fits
the observational data well.

Chaotic Inflation
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Figure 3. Joint constraints on the ns—r plane from the WMAP 5-year

data, and a couple of other datasets. The contours indicate the 68 and
95% CLs derived from the data. (Top panel) The data clearly exclude
the n = 4 large field model at more than 95% CL for N < 60 (the solid
line). In contrast, the #» = 2 model (the dashed line) performs better, and
falls at the boundary of the 68% region for N =60. (I should again
stress that the number of e-folds have been counted backwards from the
end of inflation.) (Bottom panel) Behaviour of power law inflation in
the slow-roll limit (i.e. when g << 1). It is evident that, while models
with ¢ <60 are outside the 95% region, models with ¢ ~ 120 lie close
to the boundary of the 68% region. (Note that p in the bottom panel is
what I have called as ¢. I would refer the reader to Komatsu et al.®” for
any further details.)
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Features in the primordial spectrum

In this review, I had restricted myself to discussions on
slow-roll inflation, which leads to a featureless and nearly
scale-invariant primordial spectrum that seems to agree
well with the recent observations of the CMB anisot-
ropies. Though the agreement is rather good, there also
exist a few points at the lower multipoles of the observed
CMB angular power spectrum which lie outside the cos-
mic variance associated with the concordant model.
Given these observations, a handful of model independ-
ent approaches have been constructed to recover the pri-
mordial power spectrum. At the smaller scales, all these
approaches arrive at a spectrum that is nearly scale-
invariant. However, many of the approaches seem to un-
ambiguously point to a sharp drop in power (along with a
few distinct features) at the scales corresponding to the
Hubble scale today. If future observations support the
presence of such features in the primordial spectrum, then
it poses an interesting challenge to build inflationary
models that lead to the required spectrum. Conversely,
the necessities of features will considerably restrict the
class of allowed models of inflation. (For various efforts
in this direction, see the references listed in Jain et
al 7172

Deviations from Gaussianity

I had earlier mentioned that the scalar perturbations gen-
erated during inflation are Gaussian in nature. I had also
clarified that this was primarily due to the fact that we
had confined ourselves to linear perturbation theory. De-
viations from Gaussianity can arise when one takes into
account the perturbations at the higher orders”’*. How-
ever, the extent of the non-Gaussianity depends on a vari-
ety of reasons (for a recent discussion on the issue and
further references, see Komatsu'™). Interestingly, recent
re-analysis of the WMAP 5-year data seems to indicate
sufficiently large non-Gaussianities (see, for instance,
Smith et al.”®). If future observations confirm such a large
level of non-Gaussianity, then it can result in a substan-
tial tightening in the constraints on the inflationary mod-
els. For example, canonical scalar field models that lead
to a nearly scale-invariant primordial spectrum contain
only a small amount of non-Gaussianity and, hence, may
cease to be viable”’. However, it is known that primordial
spectra with features can lead to reasonably large non-
Gaussianities’®"®. Therefore, if non-Gaussianity indeed
turns out to be large, then, either one may have to recon-
cile with the fact that the primordial spectrum contains
features, or one possibly has to seriously consider models
described by non-canonical actions, some of which are
known to result in large Gaussianities (see, for instance,
Langlois et al.®*®").

Hopefully, one or both of these aspects will help us
arrive at a satisfactory model of inflation.
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