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This review on dark energy is intended for a wider
audience, beginners as well as experts. It contains
important notes on various aspects of dark energy and
its alternatives. The section on Newtonian cosmology
followed by heuristic arguments to capture the pre-
ssure effects allows us to discuss the basic features of
physics of cosmic acceleration without actually resort-
ing to the framework of the general theory of relati-
vity. The brief discussion on observational aspects of
dark energy is followed by a detailed exposition of
underlying features of scalar field dynamics relevant
to cosmology. The review includes pedagogical presen-
tation of generic features of models of dark energy
and its possible alternatives.
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Introduction

THE 20th century has witnessed remarkable developments
in the field of cosmology. The observation of redshift of
light emitted by distant objects and the discovery of
microwave background in 1965 have revolutionized our
thinking about the universe. The Hot Big Bang model
then received the status of the standard model of the uni-
verse. However, in spite of the theoretical and observa-
tional successes, cosmology remained confined to a rather
narrow class of scientists; others considered it as the part
of a respectable philosophy of science. Cosmology wit-
nessed the first revolution in 1980 with the invent of
cosmological inflation, making it acceptable to the larger
community of physicists. Since then, it has been going
hand-in-hand with high-energy physics. The scenario en-
visages that the universe has gone through a phase of fast
accelerated expansion at early epochs. Inflation is a para-
digm which can resolve some of the in-built inconsistencies
of the Hot Big Bang model and provides a mechanism for
generation of primordial fluctuations needed to seed the
structure we see in the universe today. In the past two
decades, observations have repeatedly confirmed the pre-
dictions of inflation. However, its implementation is ad
hoc and requires support from a fundamental theory of
high-energy physics. As inflation takes place around the
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Planck epoch, the needle of hope points towards string
theory — a consistent theory of quantum gravity.

The second revolution cosmology witnessed in 1998, is
related to late time cosmic acceleration'>. The observa-
tions of high redshift supernovae reveal that the universe
is accelerating at present. The phenomenon is indirectly
supported by data of complimentary nature such as cos-
mic microwave background (CMB), large-scale structure,
baryon acoustic oscillation and weak lensing. It is inter-
esting that the thermal history of our universe is sand-
wiched between two phases of accelerated expansion. In
the Newtonian language, cosmic repulsion can be real-
ized by supplementing the Newtonian force by a repul-
sive term on phenomenological grounds. The rigorous
justification of the phenomenon can only be provided in
the framework of general theory of relativity (see ref. 3
for early attempts in this direction). Late time accelera-
tion can be fuelled either by an exotic fluid with large
negative pressure, dubbed the dark energy®” or by modi-
fying the gravity itself'!. The simplest candidate of dark
energy is provided by the cosmological constant A,
though there are difficult theoretical issues associated
with it'** Its small numerical value leads to a fine tun-
ing problem and we do not understand why it becomes
important today a la coincidence problem.

Scalar fields provide an interesting alternative to cos-
mological constant'®”. To this effect, cosmological dy-
namics of a variety of scalar fields has been investigated
in the literature (see Copeland er al.® for details). They
can mimic cosmological constant-like behaviour at late
times and can provide a viable cosmological dynamics at
early epochs. Scalar-field models with generic features
are capable of alleviating the fine-tuning and coincidence
problems. As for the observation, at present, it is abso-
lutely consistent with A, but at the same time, a large
number of scalar-field models are also permitted. Future
data should allow to narrow down the class of permissible
models of dark energy.

As an alternative to dark energy, the large-scale modi-
fications of gravity could account for the current accel-
eration of the universe. We know that gravity is modified
at short distance and there is no guarantee that it would
not suffer any correction at large scales, where it is never
verified directly. Large-scale modifications might arise
from extra-dimensional effects or can be inspired by fun-
damental theories. They can also be motivated by phe-
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nomenological considerations such as f(R) theories of
gravity. However, any large-scale modification of gravity
should reconcile with local physics constraints and
should have potential of being distinguished from the
cosmological constant. To the best of our knowledge, all
the schemes of large-scale modification, at present, are
plagued with some other problems.

The review is organized as follows: After introduction
and a brief background, I present cosmology in Newto-
nian framework titled ‘The homogeneous and isotropic
Newtonian cosmology’ and mention efforts to put it on
the rigorous foundations in the domain of its validity.
Next, I titled ‘Beyond Newtonian physics: pressure cor-
rections’ have put forward heuristic arguments to incor-
porate A, in particular and pressure corrections, in
general, in the evolution equations and describe the broad
features of cosmological dynamics in presence of cosmo-
logical constant. Then a short introduction to relativistic
cosmology is provided and issues associated with cosmo-
logical constant are discussed. After a brief subsection on
observational aspects of cosmic acceleration, [ will pro-
ceed to highlight the generic features of scalar field dy-
namics relevant to cosmology and mention the current
observational status of dynamics of dark energy. In the
last section before summary, I present a discussion on the
current problems of alternatives to dark energy.

Last but not least, a suggestion for the follow-up of this
review is in order. At present, there exist, a number of
excellent reviews on dark energy*™® and cosmological
constant' ™, which focus on different aspects of the sub-
ject. Four recent and interesting reviews’ ' which try to
address the theoretical and observational aspects of late-
time cosmic acceleration are highly recommended.
Humility does not allow me to mention that Copeland et
al.® is the most comprehensive theoretical review on dark
energy with pedagogical exposition.

The smooth expanding universe

The universe is clumpy at small scales and consists of a
rich structure of galaxies, local groups of galaxies, clusters
of galaxies, super-clusters and voids. These structures
typically range from kiloparsecs to 100 megaparsecs. The
study of large-scale structures in the universe shows no
evidence of new structures at scales larger than 100
megaparsecs. The universe appears smooth at such scales,
which leads to the conclusion that it is homogeneous and
isotropic at large scales, which serves as one of the fun-
damental assumptions in cosmology known as cosmo-
logical principle'®. Homogeneity tells us that the universe
looks the same when observed from any point, whereas
isotropy indicates that it looks the same in any direction.
In general, these are two independent requirements. How-
ever, isotropy at each point is a stronger assumption
which implies homogeneity also. The cosmological prin-
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ciple presents an idealized picture of the universe which
allows us to understand the background evolution. The
departure from smoothness can be taken into account
through perturbations around the smooth background.
Observations confirm the presence of tiny fluctuations
from smoothness in the early universe. According to
modern cosmology, these small perturbations via gravita-
tional instability are believed to have grown into the
structures we see today in the universe'® =’

One of the most remarkable discoveries in cosmology
includes the expansion of the universe and its beginning
from the Big Bang. The analysis of radiation spectrum
emitted from distant galaxies shows that wavelengths of
spectral lines are larger than the actually emitted ones;
the phenomenon is known as redshift of light. Redshift is
quantified by the symbol z defined as z = (Ap — Aom)/Aem.
According to the Doppler effect, the wavelength of light
emitted by a source receding from the observer appears
shifted towards the red end of the spectrum and the red-
shift is related to the velocity of recession v as z =~ v/c for
v << ¢. In the beginning of the last century, astronomers
could measure the distances to a number of distant gala-
xies. Hubble carried out investigations of recession velo-
cities and plotted them against the distances to galaxies.
He concluded in 1929 that there is a linear relation bet-
ween recession velocity of the galaxies and the distance
to them — the so called Hubble law.

The observational conclusion that the universe expands
is based upon the redshift of radiation emitted by distant
galaxies. Can we have another explanation for the red-
shift? It might look surprising that photons from larger
distances emitted from galaxies reach us redshifted due to
the recession of galaxies and nothing else happens to
them. They travel through the intergalactic medium and
could be absorbed by matter present there and then emit-
ted, losing part of their energy in this process and thereby
leading to their redshift without resorting to expansion of
the universe. This apprehension can be refuted by a sim-
ple argument. As for the absorption, the underlying pro-
cess is related to the scattering of photons by the particles
of the intergalactic medium. If this is true, the source
should have appeared blurred, which is never observed.
Other efforts assuming the exotic interactions of photons
could not account for the observed redshift. Thus the only
viable explanation of the phenomenon is provided by the
expansion of universe®.

If we imagine moving backward in time, the universe
was smaller in size, the temperature was higher and there
was an epoch when the universe was vanishingly small
with infinitely large energy density and temperature — the
beginning of the universe dubbed as the Big Bang. Matter
was thrown away with tremendous velocity; since then,
the universe is expanding and cooling. At early times, it
was extremely hot and consisted of a hot plasma of ele-
mentary particles. There were no atoms and no nuclei.
Roughly speaking, at temperatures higher than the bind-
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ing energy of hydrogen atom, the photons were freely
scattering on electrons and atoms could not form. As the
universe cooled below the temperature characterized by
the binding energy of hydrogen atom, the electrons com-
bined with the protons to form hydrogen atoms leading to
the decoupling of radiation from matter. This was an
important epoch in the history of the universe, known as
recombination. The decoupled radiation since then is just
expanding with the expanding universe and cooling. The
discovery of microwave background, the relic of the Big
Bang in 1965 confirms the hypothesis of Hot Big Bang.

The homogeneous and isotropic Newtonian
cosmology

Newtonian theory of gravitation allows us to understand
the expansion of a homogeneous, isotropic universe in a
simple way. The Newtonian description is valid provided
the matter filling the universe is non-relativistic and
scales associated with the problem are much smaller than
the Hubble radius. For instance, at early epochs, the uni-
verse was hot, dominated by radiation. Hence the early
universe, strictly speaking, should be treated using rela-
tivistic theory. The general theory effects are also crucial
at super Hubble scales. Despite its limitations, Newtonian
cosmology provides a simple and elegant way of under-
standing the expansion of the universe'®*>*",

Hubble law as a consequence of homogeneity
and isotropy

Using the Newtonian notions of physics, let us show that
the Hubble law is a natural consequence of homogeneity
and isotropy. Let us choose a coordinate system with ori-
gin O, such that matter is at rest there and let us observe
the motion of matter around us from this coordinate sys-
tem. The velocity field, i.e. the velocity of matter at each
point p around us at an arbitrary time, depends upon the
radius vector r and time . We should now look for the
most general velocity field in a homogeneous and iso-
tropic universe. Let us assume another observer located at
point O’ with radius vector ry and moving with velocity
v(ro) with respect to the observer O. If we denote the
velocity of point p relative to O and O’ at time ¢ by v(r,)
and v'(r},), we have,

4

Y =1, -y, D
V() = V(r,) ~ VI, @

where r, and r; denote the radius vectors of point p with
respect to O and O’ respectively. The cosmological prin-
ciple tells us that the velocity field should have the same

functional form at any point,
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V) = V(r,)~ V(r,), (3)

which clearly implies that the velocity field is a linear
function of its argument r,

v(r, H=T(r, 4

where 7 is a 3 x 3 matrix. The matrix can always be dia-
gonalized by choosing a suitable coordinate system. [so-
tropy then reduces it to Kronecker symbol (T;; = H(1)J;))
leading to

v(r, t)=H(Pr, )

where H is known as the Hubble parameter. In general, a
velocity field can always be decomposed into a rotational
part, inhomogeneous part and isotropic part at each point.
It is not surprising then that the homogeneous and iso-
tropic velocity field has the form given in eq. (5), known
as the Hubble law.

It can easily be verified that the Hubble law holds at
any point. If we move from O to O, we can write

V(r,)=Hr, - Hr, = H()r,. (6)

The Hubble law gives the most general form of velocity
field permissible by the homogeneity and isotropy of
space.

Hubble law tells us how the distance between any two
points in space changes with time provided we know the
expansion rate given by H(?),

r(t) = xed FOU % =y =), 7

The law of expansion depends upon how the Hubble para-
meter /7 varies with time. Equation (7) shows how dis-
tances in a homogeneous and isotropic universe scale
with the scale factor a(f),

a(r) = A0 o H@y="2, (8)

(1) = a(t)x. )]

Complete information about the dynamics of a homo-
geneous and isotropic universe is contained in the scale
factor; we thus need the evolution equation to determine
a(t). In case H is independent of time, we have an expo-
nentially expanding universe dubbed de-Sitter space. In
what follows I shall confirm that constant Hubble rate is
allowed in relativistic cosmology provided the energy
density of matter in the universe is constant. It is believed
that the universe has passed through an exponentially
expanding phase known as inflation at early times.
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According to the Hubble law, in a homogeneous and
isotropic universe, all the material particles move away
radially from the observer located at any point in the uni-
verse. This motion is refereed to as Hubble flow. Indeed,
any freely moving particle in such a background would
ultimately follow the Hubble flow. Motion over and
above the Hubble flow is called peculiar motion, which
can only arise in a perturbed universe. It often proves
convenient to change a coordinate system dubbed comov-
ing, which expands with the expanding universe. Matter
which follows the Hubble flow will be at rest in the co-
moving coordinate system, i.e. matter filling a homo-
geneous, isotropic universe is at rest with respect to the
comoving observer. Both the frames are physically
equivalent. Let us clarify that the universe does not
appear homogeneous and isotropic to any observer, for
instance, if an observer is moving with a large velocity,
say, towards a particular galaxy, the universe looks dif-
ferent to him/her. A physical coordinate system is a sys-
tem in which matter is at rest at the origin and moves
away radially at other points. The radius vector r of any
point in this system called physical, changes with time,
whereas its counterpart X in the comoving system is con-
stant. This means that physical distance between any two
points in the expanding universe is given by the comov-
ing distance multiplied by a factor that depends upon
time, which is precisely expressed by eq. (7) or equiva-
lently by eq. (9).

Evolution equations

I now turn to the evolution equation for the scale factor.
Thanks to isotropy, we can employ spherical symmetry to
derive the evolution equation. At a given time ¢ called the
cosmic time, let us consider a sphere centred at O with
radius (7). Let py(f) be the density of matter in the homo-
geneous, isotropic space referred to as background space
hereafter. We assume that the net gravitational force on a
particle of mass m situated on the surface of the sphere
due to matter outside the sphere is zero, which means
that matter inside the sphere alone can influence the

Figure 1. Particle of mass m on the surface of a sphere of radius r(¢)
in an expanding universe with uniform matter density.
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motion of the particle. The total energy of the particle on
the surface of the sphere (Figure 1) at any time is con-
stant given by the expression®,

1 .5
E. =—mr
Tot 2

—%”mprrz. (10)

This equation can be cast in the following convenient
form,

Ry

=[O 3 Gp 1y e (1
}”(l) 3 mr ([)

which readily translates into an evolution equation for

a(?) (see eq. (9)) known as the Friedmann equation,

N2
aY 8r K 2E;,
i a(5) <Fomo- G kT

X m

(12)

where K can be zero, negative or positive depending on
how kinetic energy compares with the potential energy.

In order to solve the evolution equation for a(¢), we
need to know how matter density p,(#) changes with time,
i.e. we need the conservation equation in the expanding
universe. For a non-relativistic fluid, the continuity equa-
tion that gives us the evolution of matter density of the
fluid 1s,

9Py (1)
ot

+(V-p,v) = 0. (13)

Remembering that the matter density of the background
fluid is independent of the coordinates and fluid velocity
is given by the Hubble law (i.e. eq. (6)), we transform the
continuity equation to have the usual form,

9o 3pp 0, (14)
ot
which formally integrates to,
oV
oy () = p (;j , (15)

where the subscript ‘0° denotes the quantities at the pre-
sent epoch. The evolution of matter density of nonrelati-
vistic fluid has a simple meaning that the mass of the
fluid in a comoving volume remains constant.

Though eq. (12) formally resembles the evolution
equation of relativistic cosmology, its derivation presen-
ted above is defective. The expression for the potential
energy is written with an assumption that gravitational
potential can be chosen as zero at infinity, which is not
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true in an infinite universe. Since the mass density py, is
constant in space, the total mass of universe diverges as
#. As a result, the potential ~47Gp /3 cannot be nor-
malized to zero at » = co. One could try to circumvent the
problem by assuming that p, vanishes for a given large
value of r, but it would conflict with the underlying as-
sumption of homogeneity. Therefore, conservation of en-
ergy is difficult to understand in an infinite universe with
uniform matter density.

We can also derive the evolution equations using the
Newtonian force law'®. The force on the unit mass situ-
ated on the surface of a homogeneous sphere with radius
r is given by

P00 (16)
3
The Euler’s equation
av VP, a7

—+(v-V)v=—"T+F
ot £

in a homogeneous isotropic background simplifies to

F=(H+H)r, (18)
where F is the force per unit mass on the fluid element
given by eq. (16). We have used the fact that pressure
gradients are absent in a homogeneous, isotropic back-
ground and the velocity field is given by the Hubble law.
It should also be noted that the pressure P, =0 for the
non-relativistic background fluid under consideration.
Using eqs (16) and (18), we obtain the equation for
acceleration,

lﬁ—_4”G ([)
a dr? 3 Poth),

(19)
which could also be obtained directly from eq. (16).
Equation (19) can easily be integrated to give the Fried-
mann equation. Indeed, by multiplying the above equa-
tion by @ and using the evolution of mass density allows
us to write

887G K
H? === p 0= (20)
a
R7G o
Kzag[ﬂ;b—Hg]. Q1)

The above derivation is also problematic as it assumes
that the mass outside the sphere, used while writing eq.
(16), can be neglected, which is not true for an infinite
universe with constant mass density.
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The problem can be circumvented using the geometric
reformulation of Newtonian gravity in the language of
Cartan. According to Cartan’s formulation, orbits of par-
ticles are assumed to be the geodesics of an affine space
and gravity is then described by the curvature of the
affine connection (see Tipler’ and references therein).
According to Tipler’®, no pathology in cosmology associ-
ated with Newton’s force law then occurs and the evolu-
tion equations of Newtonian cosmology,

7G K
H? == py@= (22)
a
©
K= g[gﬂipb —ng, 23)
1d? 4nG
op, (1
pg,( ) £ 3H py (5 =0, (25)

can be put on rigorous foundations. Equations (22), (24),
and (25) are identical to the evolution equations of Fried-
mann cosmology for non-relativistic fluid filling the
universe. Whether or not one adopts the formulation pre-
sented in Tipler”, Newtonian cosmology is nevertheless
elegant and simple.

Let us point out an important feature of Newtonian
cosmology. We note that the expression of K/a” remains
unchanged under the scale transformation a(¥) — Ca(¢), C
being constant. As a result, the evolution equations (i.e.
eqs (22) and (24)) also respect the scale-invariance. This
invariance is a characteristic of specially flat Friedmann
cosmology. The Newtonian cosmology can mimic all
three topologies of relativistic cosmology corresponding
to K=0, 1, in spite of the fact that the underlying
geometry in Newtonian cosmology is Fuclidean. Let us
note that the scale factor in Newtonian cosmology can
always be normalized to a convenient value at the present
epoch. This is related to a simple fact that the Friedmann
equation (eq. (22)) does not change if we re-scale the
scale factor, which leaves the normalization of a arbi-
trary. The often used normalization fixes the scale factor
a(?) =1 at the present epoch, i.e. ap = 1. In case of relati-
vistic cosmology, the latter can only be done in the case
of K =0, whereas in the case of K =21, the numerical
value of the scale factor ay depends upon the matter con-
tent of the universe.

The second important feature of Newtonian cosmology
is that it leads to an evolving universe. Indeed, we could
ask for a static solution given by a(#) and a(z)= 0, which
is permitted by the Friedmann equation (eq. (22)) but not
allowed by the equation for acceleration (eq. (24)). It is
remarkable that Newtonian cosmology gives rise to an
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evolving universe. It is an irony that the discovery of
expansion of the universe had to wait for the general the-
ory of relativity. This is related to the commonly held
perception of static universe, which was prevalent before
Friedmann discovered the non-static cosmological solu-
tion of Einstein equations. So much so that Einstein him-
self did not believe in the Friedmann solution in the
beginning and tried to reconcile his theory with the static
universe by introducing cosmological constant, which he
later withdrew.

The past, future and how old are we?

The general features of solutions of the evolution equa-
tions can be understood without actually solving them.
What can we say about the past and the fate of universe?
The equation for acceleration tells us that a4 <0 for stan-
dard form of matter. This means that a(f) as a function of
time is concave downward. We need input regarding a at
present to make important conclusions about the past.
Observation tells us that a(r) >0 at present. Thus a(¥)
monotonously decreases as ¢ runs backward. It is there-
fore clear that there was an epoch in the history of the
universe when a(f) vanishes identically. Without the loss
of generality, we can take 7 = O corresponding to a(¢) = 0.

As for the fate of the universe, the problem is similar
to that of escape velocity, namely if K> 0, the kinetic
energy is less than the potential energy. In this case a(¥)
would increase to a maximum value where a(t) =0, it
would start decreasing thereafter till it vanishes and the
universe ends itself in a big crunch. In case K <0, the
scale factor would go on increasing forever; K = 0 repre-
sents the critical case. Three different possibilities, K =0,
K>0 or K <0 correspond to critical, closed and open
universe respectively. We should emphasize that the fate
of the universe also crucially depends upon the nature of
matter filling the universe. In some case, the universe
may end itself in a singular state or the cosmic doomsday.

Which of the three possibilities is realized in nature?
To answer this question, let us rewrite eq. (12) in a con-
venient form,

K Py ()
Q —]l=— R
0= 0.(1)

i 0= (26)

where the critical density is defined as, 0,(r) = 3H*(1)/
87G. Specializing eq. (26) to the present epoch, we find
that,

Q) >1 (péo) > p{”) = K >0 closed universe,
Q) =1 (péo) = pc(o)) = K =0 — critical universe,

Qg <1 (péo) < pc(o)) = K <0 — open universe.
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where the superscript ‘0 designates the corresponding
physical quantities at the present epoch. Since we know
the observed value of pc(o), one of the three types of uni-
verse we live in, depends upon how matter density in the
universe compares with pgo). Observations on CMB
indicate that the universe is critical to a good accuracy or
K =~ 0, which is consistent with the inflationary para-
digm.

Let us come to the solution of the Newtonian cosmo-
logy in case of K = 0. Substituting p,(¢) from eq. (15) in
eq. (22), we find that, d*> ~a™, which easily integrates
giving rise to

2/3
a(t) = [’] : @7)
Iy
2
(0 =P [’f] , 28)
H=21 (29)
3t

The above solution is known as Einstein—de-Sitter solu-
tion. We can estimate the age of universe using eq. (29),

fo (30)

= EH—O
Interestingly, if gravity were absent, the universe would

expand with constant rate given by H,. Using the Hubble
law we would then find,

3D

which is the maximum limit for the age of the universe in
the Hot Big Bang model (2H0_1/3 <ty<H"). The pre-
sence of standard matter always leads to deceleration,
thereby leading to smaller time taken to reach the present
Hubble rate of expansion. The presence of cosmological
constant or any other exotic form of matter can crucially
alter this conclusion.

Cosmological constant a la Hooke’s law

We have seen that Newtonian cosmology gives rise to the
evolving universe but for the historical reasons, cosmo-
logy had to wait for the general theory of relativity to dis-
cover it. The fact that Newtonian cosmology leads to
non-stationary solution was known before the general
theory was discovered, but it could receive attention as it
conflicted with the perception of the static universe. At-
tempts were then made to modify Newtonian gravity to
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reconcile it with the static universe. Clearly, the modifi-
cation should be such that it becomes effective at large
scales, leaving the local physics unchanged. Looking at
the Newton’s force law (eq. (16)), it is not difficult to
guess that a static solution is possible provided that we
add a repulsive part proportional to the radius vector r in
eq. (16). Newton’s law of gravitation should therefore be
supplemented by linear force law'®*>31-3

B 4G 1

F= r+—Ar,
3 T

(32)

where A is known as the cosmological constant which is
positive in the present context. It is interesting to note
that there are only two central forces, namely the inverse
square force and the linear force, which give rise to stable
circular orbits,

Our discussion of cosmological constant is heuristic
and the motivation here is to incorporate the repulsive
effect in the evolution equations. We rewrite the modified
force law (eq. (32)) as an equation of acceleration using
the comoving coordinates,

1d%a _ 42G

~fa_ T 33
oy 3 (33)

A
pb@)"'?,

which shows that a positive A term contributes to accel-
eration, as it should. The integrated form of eq. (33) is
given by,

H2

KZ LA (34)

87
T AOTa Y

where the integration constant K can be formally written
again through physical quantities defined at the present
epoch. The modified force law (eq. (32)) was proposed
much before Einstein’s general theory of relativity by
Neumann® and Seeliger’® in 1895-96.

Let us note that adding the cosmological constant to
Newtonian force is equivalent to adding a constant matter
density p, = A/87G to the background matter density o,
which does not to go well with the continuity equation
(eq. (14)). Since the acceleration equation also gets modi-
fied in the presence of A, we should check whether the
modified evolution equations allow this possibility. If we
differentiate eq. (34) with respect to time and respect the
modified acceleration equation, we find that constant
matter density is permissible in the expanding universe.
As for the continuity eq. (14), it is valid for a perfect non-
relativistic fluid. The cosmological constant does not
belong to this category; the pressure corresponding to
constant energy density is not zero. The continuity equa-
tion should take the note of pressure and get appropri-
ately modified. As pointed out earlier, the present
discussion of cosmological constant here is qualitative.
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Rigorously speaking, we are trying to get the right thing
in the wrong place! I shall come back to this point after I
incorporating the pressure corrections in the evolution
equations.

The evolution equations, i.e. eqs (34) and (33) admit a
static solution (a = const =ay) in case of K> 0. Static
Einstein universe (¢ =0 and g = 0) is possible provided
that A has definite numerical value

A=A, =47Gp®. (35)
We shall observe after a short while that the static Ein-
stein universe is unstable under small fluctuations.

The qualitative features of solutions of the evolution
equations can be understood without actually solving
them. Equation (33) can be thought of as an equation of a

point particle in one dimension ",

ol
=——" 36
% (36)
moving in potential field
2 2
V(a)= _[A'”Gfb“Jr Ag] G7)

where I have used the fact that p,~a . The Hubble
equation acquires the form of the total energy of the
mechanical particle

.2

E= “7+ V(a), (38)

where £ = —K/2. In order to make the mechanical analogy
transparent, let us compute the minimum of the kinetic
energy. If the minimum exists, it should obviously corre-
spond to the numerical value of the scale factor that gives
rise to the maximum of the effective potential I(a). It is
easy to see that the kinetic energy is minimum if a = ay,,

a, =AM, (39
a* 1. 23,13
[2] =§(A AP - K, (40)

where A:47Z'G,0é0)ag. Note that V(a) is maximum at

a = ay. From eq. (40), we infer that the kinetic energy of
the system at the top of the potential is,

.2 3
[“) >0 if AZACEK—Z.

2 A “h

In case A = A, the system barely makes to the hump of
the potential (a=0) corresponding to a,, =a,, where
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(a=0), as it should be (see eq. (36)); this is nothing but
the Einstein’s static solution. We can now provide a
qualitative description of the solutions of the evolution
equations. For A <A, the kinetic energy is formally
negative for a = a,,, which means that it vanishes before
the particle reaches the maximum of the potential. In Fig-
ure 2 we have displayed the plot of V(a) vs the scale fac-
tor a. We show three possible configurations of interest:
(A) corresponds to motion starting from the left of the
barrier with a = 0. (B) depicts the situation in which the
potential barrier is approached beginning from the right
with a large value of the scale factor. (C) represents the
possibility of static solution.

We first analyse the case of K> 0 or £ <0, which
gives rise to a variety of interesting possibilities.

(1) A <A, In this case, the kinetic energy is insuffi-
cient to overcome the potential barrier giving rise to the
following interesting solutions.

(a) Oscillating solution: In this case, motion starts from
a =0 with insufficient kinetic energy to reach the hump
of the potential. In this situation, the scale factor in-
creases up to a maximum value where a =0 for a <a,,
marking the turning point followed by the contraction to
a=0.

(b) Bouncing universe: If the potential barrier is ap-
proached from the right side with a = oo, the scale factor
first decreases and reaches a minimum value and then
bounces to expanding phase as the kinetic energy is not
enough to overcome the barrier.

(¢) Einstein static universe: This configuration corre-
sponds to the maximum of the potential with ¢=0 and
d =0, possible for a particular value of A obtained ear-
lier. Clearly, the static universe corresponding to a point
particle sitting on the hump of the potential, is not stable.
Small perturbations would derive it to either contracting
(a = 0) or expanding (@ — o0) universe.

V(a)
o C a
f
At NeB
Figure 2. Plot of the effective potential V(a) vs the scale factor a.

Configurations (A) and (B) correspond to motion of system beginning
from a =0 and a =1 respectively. (C) corresponds to static solution
unstable under small fluctuations.
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(2) A <A, The kinetic energy is sufficient to over-
come the barrier for this choice of A. As a result, motion
first decelerates till the system reaches the top of the
potential and then slides down the hill with acceleration.
The scale factor exhibits the point of inflection at
a(t) = a, <ao. If A slightly exceeds its critical value, an
interesting possibility dubbed loitering universe can be
realized. The scale first increases as it should, approaches
ao and remains nearly frozen for a substantial period
before entering the phase of acceleration. Such a scenario
has important implications for structure formation.

For K <0 or E > 0, the system always has enough kinetic
energy to surmount the barrier allowing the scale factor
to increase from a =0 to large values as time increases.
This case 1s similar to the one with K > 0 and A >A..

For any given value of A, the scale factor exhibits the
point of inflection at a = a,, = (47Z'G,0t()0)a8 /A3, This is
also clear from eqs (32) and (33) in which the first term is
the attractive character and dominates in the beginning
leading to deceleration. However, as the scale factor in-
creases and reaches a particular value, the repulsive term
takes over; the scale factor exhibits the point of inflection
and the expansion becomes accelerating thereafter.

Observations should tell us when deceleration changed
into acceleration. This crucially depends upon how
47Z'G,0t()0) compares with A or how p, compares with
pﬁ) /2. The transition from deceleration to acceleration
should have taken place around the present epoch. Had it
happened much earlier it would have obstructed structure
formation®!. We shall come back to this point to confirm
that cosmic acceleration is indeed a recent phenomenon.

Beyond Newtonian physics: pressure corrections

The formalism of Newtonian cosmology is not applicable
to relativistic fluids. Relativistic fluids essentially have
non-zero pressure. For instance, radiation is a relativistic
fluid with pressure P, = pyc™/3. The cosmological con-
stant also belongs to the category of relativistic systems.
In the general theory of relativity, pressure appears on the
same footing as energy density. Here we present heuristic
arguments to capture the pressure corrections in the evo-
lution equations (see Zel’dovich and Novikov®).

Let us consider a unit comoving volume in the expand-
ing universe and assume the expansion to be adiabatic.
The first law of thermodynamics states that

dE+ Pd) =0, (42)
where Py(#) is the pressure of the background fluid. The
first law of thermodynamics applies to any system, be it
relativistic or non-relativistic, classical or quantum —
thermodynamics is a great science.

The energy density of the fluid can always be ex-
pressed through the mass density,
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