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An approximate approach for nonlinear
system response determination under
evolutionary stochastic excitation
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A method based on the concepts of stochastic averag-
ing and equivalent linearization is presented for deter-
mining the response of a lightly damped nonlinear
single-degree-of-freedom oscillator to a random exci-
tation with an evolutionary broad-band power spe-
ctrum. The nonlinearities could be either of the
hysteretic or the ‘zero-memory’ kind. Approximate
analytical relationships for evaluating the response
variance are derived for a number of oscillators. The
efficiency and accuracy of the approach is demon-
strated by pertinent digital Monte Carlo simulations.
The significant advantage of the proposed approach
relates to the fact that it is readily applicable for exci-
tations possessing even non-separable evolutionary
power spectra circumventing ad hoc pre-filtering and
pre-processing excitation treatments associated with
existing alternative schemes of linearization.

Keywords: Monte Carlo simulation, nonlinear system,
stochastic process.

Introduction

A BROAD class of structural systems is subject to excita-
tions such as seismic motions, winds and ocean waves
which inherently possess the attribute of evolution in
time. Therefore, to accurately predict the system behav-
iour under this kind of loading, realistic modelling has
involved representation of these phenomena by non-
stationary stochastic processes. Associated with the
notion of a non-stationary stochastic process is the con-
cept of a separable or a non-separable evolutionary power
spectrum. The former relates to the evolution in time of
the intensity of a process with time invariant energy—
frequency relationship. The latter, which in general
reflects a more realistic approach, encompasses the con-
cept of “local” energy distributions over frequency .
Attempts towards determining, either exactly or appro-
ximately, the response statistics of a linear oscillator
under evolutionary excitation can be found in several refs
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3-11. Caughey and Stumpf® first studied the transient res-
ponse of a linear oscillator under unit step modulated
white noise. The evolutionary power spectrum of the res-
ponse process of an oscillator subject to a unit step modu-
lated stationary excitation was studied in ref. 5. Explicit
expressions for the second moment statistics of the res-
ponse were presented in ref. 7, where the results refer to
white noise excitation modulated by step, boxcar and
gamma envelope functions. Moreover, approximate ana-
lytical solutions for the response amplitude statistics of a
lightly damped oscillator under evolutionary excitation
were derived in refs 9 and 10.

On the other hand, limited progress has been made in
terms of determining the stochastic response of nonlinear
systems. One of the interesting approaches of treating
nonlinear oscillators under evolutionary excitation has
been the coupling of the equivalent linearization method
with the decomposition of the covariance matrix of the
input random process'*. In this regard, a Karhunen-Loeve
spectral decomposition was used in ref. 13. It can be
argued, though, that often the complexity of such appro-
aches limits their versatility.

To address this issue, an approach is formulated in this
article based on the assumed pseudo-harmonic behaviour
of the response of stochastically excited and lightly
damped systems. Relying on this property, an averaging
scheme, first proposed by Stratonovich in the 1960s, is
applied to derive a first-order stochastic differential equa-
tion for the response amplitude'*™’. The Fokker—Planck
(F-P) or forward Kolmogorov equation associated with
this equation is then considered'® =" having as stiffness
and damping elements the equivalent ones obtained by a
linearization scheme. Using the F-P equation with the
assumption that the probability density function of the
response amplitude is a time-dependent Rayleigh one, a
first-order ordinary differential equation for the response
variance is derived. The new approach is applied to a
number of hysteretic or non-hysteretic nonlinear oscilla-
tors resulting in approximate analytical expressions for
computing the time-dependent response variance. The ac-
curacy of the proposed method is verified by pertinent
Monte Carlo simulation data.
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Mathematical formulation

Determination of the equivalent linear system
time-dependent elements

Consider a nonlinear single-degree-of-freedom system
whose motion is governed by the differential equation

i+ Px+z(t,x, %) =w(t), (D

where a dot over a variable denotes differentiation with
respect to time £, z(f,x,x%) is the restoring force which
could be either hysteretic or depend only on the instanta-
neous values of x and x; £ is a linear damping co-
efficient; and w(¥) represents a Gaussian, zero-mean non-
stationary random process possessing an evolutionary
broad-band power spectrum, S(@, f).

Focusing on the case of a lightly damped system, it can
be argued that the nonlinear oscillator (eq. (1)) exhibits a
pseudo-harmonic behaviour described by the equations

x(1) = A(t) cos[o( At + ¢(2)], )
and
x(1) = —o(A) A@) sin[w(A)t + ¢(1)], 3)

in which the response amplitude envelope (4) is a slowly
varying function with respect to time and, therefore, can
be treated as a constant over one cycle of oscillation.

Further, adopting an equivalent linearization approach
discussed in ref. 21 and described in ref. 12, a linearized
counterpart of eq. (1) is

¥+ P+ @’ (A)x =w(t), @)
where the equivalent damping element and the natural
frequency are assumed to be functions of the amplitude
(4) of the response to partly account for the effect of the
nonlinearity. Thus, defining the error between eqs (1) and
(4) as

e=z(t,x,x)+[f - P(Dx— &’ (A)x, ®)

the expressions

p—pr 32 ©)
§x2 dr
and
) §xz dr
@’ (A) = ()
§x2 dr
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are derived. This is accomplished by applying an error
minimization procedure in the mean square sense, where
($) can be interpreted as ‘an average over one cycle” op-
erator. Substituting eqs (2) and (3) into eqs (6) and (7) and
considering (4A(f)) and (¢ () constant over one cycle yields

S(4)

'B(A):'B+Aa)(A)’ (®)
and
2 CAD)
" (4) == )
where

2z
C(4) 1 j cos[yz(t, Acosy,—a(A)Asiny) dy, (10)
u 0
and

S = 1 fsin[y/]z(t,Acosy/, —o(ADHAsmy)dy. (11)
7 0

Let the symbol p(4, f) denotes the probability density
function of the amplitude (4) of the response process (x).
Then, the equivalent time-dependent damping factor and
natural frequency can be approximated by taking expecta-
tions on the right-hand sides of eqs (8) and (9) respecti-
vely. That is,

~ NN )
ﬂeqo)—ﬂ+E{Aw(AJ—ﬂ+£Aw(A)p<A,z>dA, (12)
and
R A TCi
@2, (1) :E[(T)} ZQ(T)‘”(A’ Hda (13)

Markovian modelling of the response envelope

Taking into account the manner by which the time-depen-
dent natural frequency and damping factor have been de-
termined, it can be argued that they are functions slowly
varying with respect to time. Therefore, the equivalent
linear system can be recast, approximately, in the form

i+ B, (Dx+ o), (Dx =w@), (14)
where the parameters of the system of eq. (4) have been
approximated by (B.(1) and (we,(#)). Obviously, the am-
plitude (4) and phase (@) can now be approximated by the
equations

A2<z>=x2<z>+[ X0 ] ,

W,y (1)

(15)
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and

¢(1) =, (Dt —tan”! [ (16)

x(1)
@, (Ox(1) |

Differentiating eqs (2) and (3) and taking into account eq.
(14) yields

AW == (DA sin’*[w,, (O + p(1)]
_wu )) sinfa, (1)t + (1),

eq

7

Relying once more on the assumption of light damping,
further simplification of eq. (17) is achieved by a combi-
nation of deterministic and stochastic averaging”. This
yields

S(@,, (1), 1)
2407 (1)

(@S, 0).0)"
@, (1)

A= —%/iq DAD) +

n@). (18)

which governs approximately the evolution in time of the
amplitude A(¥). In eq. (18), 7(¥) is a zero mean and delta
correlated process of intensity one, i.e., E(7(¢)) = 0; and
E(n(H(t + 1)) = 6(7), with (8(7)) being the Dirac delta
function. The importance of eq. (18) relates to the fact
that it is decoupled from the phase ¢ (¢). Thus, it is feasi-
ble to model the amplitude process A(f) as a one-
dimensional Markov process.

Fokker—Planck equation

The FP equation that corresponds to eq. (18) is***

dp(A4, 1) _ _i{[_%ﬂeq([)A+M]p(A,[)}
. (19)

ot 04 247 (1)

N 7S, (D), 1) 3* p(4, 1) _
207 (1) 04?

Following a similar procedure as the one described in ref.
9, a solution of eq. (19) is attempted in the form

P
A, 1)y =—"—e >0,
p(4, 0 o0

(20)

where ¢(f) accounts for the time-dependent variance of
the response process x. Substituting eq. (20) into eq. (19)
and manipulating yields
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7S (@, (), 1)

(1) = =Py (c(D)e(t) + (@)

2D

Equation (21) constitutes a first-order nonlinear ordinary
differential equation for the variance of the process x,
which can be solved by standard numerical schemes such
as the Runge—Kutta one. Evidently, by approximating the
probability density function of the non-stationary ampli-
tude response by a time-dependent Rayleigh one, a
simple expression can be derived for determining the
variance of the response process.

Analytical results
Piecewise linear oscillator

The first application concerns a system with piecewise
linear stiffness. Mathematically, the stiffness function can
be described as

;x,
z(x) = {

@' x + x, (0} — ) )sign(x), |x| > X,

|x| <x,

(22)

where the ‘small’ deflection stiffness is given by ;.
When the absolute value of the displacement exceeds xq,
the stiffness changes to @. Equivalently, making use of
the Heaviside function yields

z(x) :a)ozx+(l—[H(x+x0)—H(x—x0)])

(23)
X (@] x + x, (0} — ) )sign(x) — af)x),
where
Hex) 0, x<0 (24
x)= .
1, x>0

Introducing the non-dimensional displacement y = x/x*;
and the non-dimensional time quantity 7= wqt, eq. (23)
becomes

M =y+A=-[Hy+DH-Hy-DD
X (sy +(1=5)sign(y) - y), (25)

where s is the ratio of secondary to primary elastic slope.
Evaluating the integrals in eqs (8) and (9) yields

B =p. (26)
and
@’ (4)

2 /1 —iz (1—5)+ Ams — 24(~1+ s)cse ™ (4)
= A4 , A>1

A
L A<,
27
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where
-1 af 1
csc (A) =sin [_j 28)
A
Using eqs (12) and (13) yields the expressions
@, (1)
- 1 .
J. 2 1_?(1—s)+Aﬂs O
_ 1_67251(,) + ol —2A4(-14s)esc(4)
7re(t) ’
(29)
and
L, O=p0 30)

for the time-dependent equivalent frequency and damping
factor.

Duffing oscillator

Consider the randomly excited Duffing oscillator
¥+ fx+olx+eafx’ =w(), &>0, 3D

for which the function z(z,x,x) is defined as
z(x) = a)02x+ ga)(fx3. (32)

Then, using eqs (8) and (9), the amplitude-dependent

approximate equivalent natural frequency and damping
term are found to be respectively,

BAD=Pp, (33)
and
2 2 3 2
o' (4) = [1+Z{;‘A ] 34

Substituting eqs (33) and (34) into eqs (12) and (13) res-
pectively and taking into account eq. (20), the expres-
sions

B0 =p. (35)
and
2 2 3
@ (1) = &) [1 + 580([)] (36)
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are obtained. Finally, the use of eqgs (35), (36) and (21)
leads to a first-order differential equation of the variable

().
zS| |y [1 + 380([)] t
0 2 >

ay [1 + ;Sc(l)j

é(t) = —Pe(t) + _ (37)

Bilinear oscillator

An oscillator that exhibits hysteretic behaviour of the
bilinear type is next considered. Thus, the equation of
motion (1) becomes

J+py+ay+(l-a)z, = [(7), (38)
where the non-dimensional displacement y = x/x* and the
non-dimensional time quantity 7= wot have been intro-
duced; x* is the critical value of the displacement at
which the yield first occurs, @ is the frequency of the
oscillation corresponding to the primary elastic slope; a is
the ratio of plastic to elastic stiffness, and z, is the hyster-
etic force corresponding to the elasto-plastic characteris-
tic. The hysteretic force z, can be represented in terms of
a first-order differential equation®' as

2y = YI=HW)H (2, =) ~H y)H (=2, = D]. (39
Comparing eqs (1) and (39) yields
zH)=ay+(1-a)z,. (40)

Using eqs (8) and (9), the amplitude-dependent equiva-
lent elements are determined as

d-a)S, D)

B =t —— , (1)
Jad® + (1-a)AC,(4)

and

a)Z(A):a+(l—a)¥, (42)
where

Co() =L [ costlz, (4.0 dy. 43)

u 0

and

Sy(A) =~ [ sinfylz, (4. dyr (44)

u 0
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A technique for evaluating the integrals in eqs (43) and
(44) can be found in refs 25 and 26, it yields

AA=05sin2A)), A>1
T

Co(d) = (45)
A, A<1.
and
i(l—lj, A>1
Sy(y=<7z\ 4 (46)
0, A<,
where
2
cos2A=1-—. 47)
A

Combining eqs (41)-(47) and (12) and (13) yields the
expressions

1

qu(z):w(l—@{l—e”@

. (48)
1 % B . T2
+ﬂc([).([(/\ 0.5sin 2A)Ae dA]
and
) .
b= fr 4(1-a) A e 2604y
7e(@) \/a ' %(A—O_Ssin 2)
(49)

for the time-dependent equivalent frequency and damping
factor.

Preisach oscillator

Recently, an envelope-based approach has been applied
in ref. 27 to determine the response amplitude statistics of
Preisach hysteretic systems under stationary Gaussian
white noise excitation. The approach has been further
extended in ref. 28 to yield response energy envelope sta-
tistics. Following the notation introduced in ref. 27, the
equation of motion (1) becomes

X+ px+@x+ f,(0)=w(), (50)
where
@:1/a)§+a)f. =, 1+¢, (51)
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o, = [k, (52)
and
p=w, /0], (53)

As mentioned in ref. 27, the Preisach restoring force can
be divided into two terms; a linear part (a)fx) and a
nonlinear one ( fy (#)) monitoring the memory of the sys-
tem. Therefore, ¢ quantifies the stiffness of the linear
counterpart of the Preisach element compared to the
linear stiffness @; contribution. Introducing now the pa-
rameter

W= , (54)
fF
eq. (50) can be recast in the form
¥+ Px+@ (x+ypd, () =w(), (55)

where (dy (1)) is the scaled hysteretic restoring force. Fur-
ther,

_ fy,max + fy,mi.n

&
fy= 5 (56)

where f, is the yielding force. Defining the non-
dimensional parameter v as

V= fy,max _f;z,min , (57)
215
and applying eqgs (8) and (9) for v = 1 yields
@2
B =p+ 2 (58)
2 [ yw
3z(1+ -
TN de gy
and
= V" (59)
41+¢)0

Equivalent expressions can be found for arbitrary values
of v, though more complicated. Combining eqs (58) and
(59), and (12) and (13) leads to the expressions

(60)

W (1) =&’ [1 _yy2mel) ]

8(1+ @)’
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and

—

B =f+—L2

3L+ @) c(t)
r 2 - 61
XJ. A — e ZC(I)dA ( )
O g Y@
A1+ )’

for the time-dependent equivalent elements.

Numerical applications

To assess the accuracy of the proposed method, digital
simulations have been performed considering both sepa-
rable and non-separable excitations. For each Monte
Carlo simulation an ensemble size of 500 realizations has
been used, whereas the value of 0.01 has been chosen for
the ratio of critical damping ().

Separable processes

In the case of a separable random process, the evolution-
ary power spectrum of the excitation is taken in the form

S(w. 1) =|g@)|’ S, @), (62)

where g(#) is a slowly varying time-dependent modulating
function; S,(w) is the power spectrum of a stationary
process v (¢). In the particular case considered herein, the
excitation process is recast in the form

w(t) = g(Ov(), (63)
with the modulating function given by the equation
gy =ke™ —e™), (64)

in which ¢ =0.25, 5 =0.5, k 1s a normalization constant
so that gp.c = L.

Modulated Gaussian white noise: The case where
Sy(w) =Sy, 0 < |w| £ oo is first considered. Obviously, for
the case of a modulated white noise excitation, there exist
several approaches for evaluating the response statistics.
However, this simulation serves the purpose of compar-
ing the proposed approach to another equivalent lineari-
zation scheme. The latter, equally simple to implement
for modulated white noise, is generally expected to have
greater accuracy, since it does not have the element of
averaging. Extended presentation of the alternative
scheme exists in ref. 12; therefore, limited background
information is included herein.
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The simulation study is restricted to the case of a
Duffing oscillator. Based on the assumption of Gaussian
approximation of the response, eqs (35) and (36) yield

L,0)=p, (65)
and
a):q o= a)02 (14+3ec(t)) (66)

for the non-stationary linearization method. The variance
of the response is then determined by solving the set of
coupled differential equations.

iE(xz) =2E(xx),
dt

%E(xfc) = —(a)o2 (1+3eE(CCMEGED
- PE(xx)+ E(xX*),
and

%E(xz) = 27| g(l)|2 S, = 2(@} 1+ 3e E(x* ) E(x¥%)

—2BE(Z).

The equivalent to the set of eqs (67) for the proposed
approach is eq. (21), which herein becomes

(67)

7)) S,

c()y=—Lc(t)+ .
o} [1 + ;Sc(l)j

(68)

The results obtained by eqs (67) and (68), along with the
digital data, are shown in Figures 1 and 2. For the natural
frequency (wy), the value 3.61rad/s has been used,
whereas the values €= 0.5 and 1 have been considered in
Figures 1 and 2 respectively. For small values of the
power spectrum (Sp), it is seen that both methods are in
excellent agreement with the Monte Carlo data. Further-

025

S, = 0IMCS
S. = 0.3 Eclin
S, = 0.30q (21)
02 S, =01 09 21)
5.« 0.1 MCS
- B, w 0.1 Edlin
5 015
e
-
g o1
> ] -
0os} | / i
{ f Tt .
i AT e
0¥ =
0 10 20 < 40 50 60
Time (s)
Figure 1. Response variance for a Duffing oscillator (¢ =0.5) under

modulated Gaussian white noise. Comparison between MCS data (500
realizations), eqs (67) and (68).
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more, it is shown that increasing the nonlinearity degree
gradually results in divergence from the digital data as
expected. However, the behaviour of the new approach
indicates at least the same reliability level as the equiva-
lent linearization one.

025
S =03MCS
S, = 03Egln
02 S, »03eq (21)
S.=01Eqln
S, = 0.1 MCS
- §,=01eq (21)
= S, = 0.05 Egl:
T 015 =0 a5 uz;sr
8 / S =005 ag (21)
[~ r
5 i
g 01} ;
2 J
| -
|
“®I1/ ~— _
1/ T, N,
o W B —— i —
0 10 @0 30 40 S0 60
Time (8)
Figure 2. Response variance for a Duffing oscillator (&= 1) under

modulated Gaussian white noise. Comparison between MCS data (500
realizations), eqs (67) and (68).

038
5, =005 MCS
07 S =005 eg. 1)
5,003 MCS
0.8 S, =003 eg. (21)
= 05
<]
g o4
®
g 03t
02+ {J
o1
0 1
0 10 20 0 0 50 60

Time (s)

Figure 3. Response variance for an oscillator with piecewise linear
stiffness (s = 2) under modulated Kanai—Tajimi spectrum. Comparison
between MCS data (500 realizations) and eq. (21).

0,06
S, =02MCS
0.08 f 8, =02 eq [21)
S, =0.1 MCS
S «010q (21)
0.04
T
g o3
> ooel |/
oo} |/
O.r,', b y — = ,i," —
0 10 20 0 40 =) 60

Time (s)
Figure 4. Response variance for a Duffing oscillator (&= 1) under

modulated Kanai—Tajimi spectrum. Comparison between MCS data
(500 realizations) and eq. (21).
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Modulated Kanai-Tajimi  spectrum: The modulated
Kanai-Tajimi*”>" excitation has been frequently used in
earthquake engineering applications. The following form

for the power spectrum is considered

81" +4(0.8)* 87)* &*

S (@)=S,
H@)=5 (87)? —*)* +4(0.8)> 87 *

—00 < (1 < 00, ©69)
This relates to the squared modulus of the frequency re-
sponse function of a single-degree-of-freedom oscillator
with prescribed stiffness and damping elements. Generat-
ing realizations of the process v(f) compatible with
(Sy(@)) 1s possible by using an auto-regressive time series
algorithm®'. Specifically, values of the (v()) at equally
spaced points along the time axis have been generated by
using the equation

p
v, =bys, — Zbkvn_k, (70)
k=1

where (v,=v(nT), T=7/w,) and @, is a selected upper
cut-off frequency of the portion of S, (w) sought to be re-
produced. Further, s,=s(nT) represents a white noise
with two-sided power spectrum equal to one. A minimi-
zation procedure results in a Toeplitz system of linear
equations known as the Yule—Walker equations. Solving
these equations leads to the determination of the para-
meters (bg). In Figures 3-5, the time evolution of the res-
ponse variance under modulated Kanai—Tajimi excitation
is plotted. In Figure 3, an oscillator possessing a piece-
wise linear stiffness is concerned. The value (s =2) is
used. In Figures 4 and 5, a Duffing (¢=1) and a hyster-
etic bilinear one (a=0.02, b=0.1), are considered res-
pectively. Reliable performance of the new approach
is seen for various values of the input strength (S)).
Comparing the new approach results to Monte Carlo

025
S, =002 MCS
02 S, = 0.02 8, (21)
S, « 0.008 MCS
- § = 0.008 0. (21)
S, » Q.01 MCS
= 018 §, = Q.01 0g, (21)
o
8
g
g o
e
>
0.05 -
04 £ - — -
0 10 20 30 40 50 60

Tirme (s)

Figure 5. Response variance for a bilinear oscillator (a=0.02,
b =0.1) under modulated Kanai—Tajimi spectrum. Comparison between
MCS data (500 realizations) and eq. (21).
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=Y
=
PRPPPL

Variance c(t)

0 10 20 30 40 50 60
Time (s)
Figure 6. Response variance for an oscillator with piecewise linear

stiffness (s = 2) under non-separable excitation. Comparison between
MCS data (500 realizations) and eq. (21).

03
8, = 0.2 MCS
025 S, =02 0q, (21)
201 MES
S =01 eq. (21)
- 02} 4
T
g 018
i W
01
0.05
% 10 2 % o 50 50
Time (s)
Figure 7. Response variance for a Duffing oscillator (¢=1) under

non-separable excitation. Comparison between MCS data (500 realiza-
tions) and eq. (21).

0.25
Se» 0.1 MCS
S=01 21)
02 - — S,-<)1I.«‘:d(lis"
- S« 005eq (21)
%’ 015
2
a 01
>
0.0
0 — . i
0 10 20 30 40 50 60

Time (s)

Figure 8. Response variance for a bilinear oscillator (a=0.02,
b =10.1) under non-separable excitation. Comparison between MCS
data (500 realizations) and eq. (21).

data, it can be argued that it captures successfully the
time evolution of the mean value of the variance, which
is quite predictable taking into account the averaging pro-
cedure which is involved.
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Non-separable processes

The non-separable power spectrum

(&)
01512, (57 o< <o

(71)

=0,

>

2
S(@, 0 =5, [%j e

is considered next. This spectrum comprises some of the
main characteristics of seismic shaking, such as decreas-
ing of the dominant frequency with time. Realization
records compatible with eq. (71) have been produced
using the concept of spectral representation of a stochas-
tic process®' 2. Specifically, the equation

(72)

w(t) = i JASUkAw, HA® cos(kAw)t +6,)

has been used, in which Aw=w /m; and & is a phase
angle uniformly distributed over the interval (0, 27). In
Figures 6-8, the time evolution of the response variance
corresponding to the non-separable excitation process is
plotted. Several values for the excitation level (S;) are
considered. Specifically, in Figure 6, an oscillator pos-
sessing a piecewise linear stiffness is concerned. The
value (s = 2) has been used. In Figures 7 and 8, Duffing
oscillator (¢=1) and hysteretic bilinear one (@ =0.02,
b =0.1) respectively are examined. Again, it is seen that
the new approach succeeds in capturing the average char-
acteristics of the variance, while neglecting the oscilla-
tory components.

Concluding remarks

In this article, the non-stationary response of nonlinear
oscillators under evolutionary excitation has been studied.
A new approach has been proposed which comprises the
clements of stochastic averaging®™>' and statistical
linearization®>°. Specifically, taking into account the
equivalent time-dependent frequency and damping factor,
a simple first-order ordinary differential equation has
been derived for the response variance. For this purpose,
a time-dependent Rayleigh distribution for the response
amplitude has been assumed. Analytical expressions have
been derived for a number of hysteretic and non-hysteretic
nonlinear oscillators.

Extensive digital studies have demonstrated the capa-
city of the approach to capture successfully the time evo-
lution of the response variance. Indeed, the new approach
succeeds in capturing the temporal average characteristics
of the variance, while neglecting the oscillatory compo-
nents. It appears that the proposed approach performs
well for a broad class of nonlinear, elastic and inelastic
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oscillators. It affords the option of treating problems
which involve non-separable and non-white excitation
spectra without resorting to ad hoc pre-filtering or other
spectral manipulation of the system excitation as is the
case for many of the existing linearization schemes'”.
Furthermore, based on the demonstrated reasonable reli-
ability of the proposed approach for determining the
nonlinear response variance, it can be argued that the
evolving Rayleigh distribution given by eq. (20) can be
used as a logical approximation of the system response
non-stationary probability density function.
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