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The discrete and the continuous: which comes first?

T. N. Narasimhan

In solving diffusion problems, it is common to consider the finite difference equation to be an approximation
to the differential equation. Nevertheless, history shows that the finite difference equation is primitive and
that the differential equation is its idealized representation designed to obtain solutions in algebraic form.
The difference equation is logically consistent within itself, independent of the differential equation. The
difference equation and the differential equation together constitute two powerful complementary tools, one
providing numerical solutions to problems of arbitrary complexity on a case by case basis, and the other
providing insights into classes of problems under idealized conditions.

The notion of a continuum and its de-
scription with a differential equation are
ruling paradigms of mathematical phy-
sics. Over the past half a century, the
digital computer has enabled numerical
solution of complex physical problems
defined over discrete domains. Com-
monly, such discretely defined problems
are treated as approximations to contin-
uum problems described by differential
equations. The observational world is
discrete and finite. If so, how may one
assume that the discrete representation is
an approximation to an idealized contin-
uum and the associated differential equa-
tion? Which comes first, the discrete or
the continuous? To find answers, it is
necessary to examine the history of dif-
ference and differential equations. Ac-
cordingly, we examine 18th century
investigations of probability followed by
the birth of the heat equation during
early 19th century.

Difference and differential
equations in probability

Following the introduction of mathemati-
cal probability as a tool for describing
outcomes of games of chance, the study
of probability engaged the attention of dis-
tinguished mathematicians during the
18th century. Initially, these problems
were investigated using combinatoric
methods. For example, Bernoulli' consid-
ered a problem involving two events, one
of them having probability of occurrence
p and the other having probability of
q =1 — p. He showed that the probability
that the first event will occur m times and
fail n times is equal to a certain term in
the expansion of (p + ¢)*, namely,
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where u = (m + n). Unfortunately, in the
absence of computing devices, expressions
such as eq. (1) could not be numerically
evaluated when u was large.

To overcome this difficulty, they de-
vised a strategy of evaluating these ratios
using definite integrals. For this purpose,
the technique of génératrice function was
introduced during the middle of the 18th
century. The central idea was to set up a
power series expansion in which the
required probability will form a coeffi-
cient. Having set up such an equation,
the next step was to evaluate a desired
coefficient by setting up an appropriate
difference equation expressing the in-
cremental change in the coefficient as u
is increased to (¢ + 1).

Pursuing this approach, Laplace’ con-
sidered a power series involving products
of two variables ¢ and ¢’ and established
the following finite difference expres-
sions for the coefficient y,, of the pro-
duct 71"
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Note that x and x” are integers and Ax =
Ax" = 1. Therefore, the right-hand sides
of eqs (2a) and (2b) denote typical finite
difference expressions with (Ax)? and AY’
implied as denominators.

Later, Laplace® used recursive reasoning
to set up the partial difference equation,
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Invoking infinitesimal reasoning, he then
replaced the difference equation with the
partial differential equation,
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where y is the relative frequency (prob-
ability density) representing y,.. Fou-
rier! built on Laplace’s solution to eq. (4)
and showed that eq. (4) is satisfied by the
normal distribution. Clearly, the princi-
pal idea underlying differential equation
(4) is a difference equation.

Difference and differential
equations in heat diffusion

At the beginning of the 19th century,
Fourier™® embarked on setting up a par-
tial differential equation describing tran-
sient heat flow in a solid. His rationale
was to consider a small, discrete volume
clement in the interior of a solid, sum up
heat fluxes flowing into and out of the
bounding surfaces of the element over a
small interval of time, and divide net ac-
cumulation of heat by the heat
capacity of the element to represent
average change in temperature of the ele-
ment over the chosen time interval. To
evaluate heat fluxes, he imagined that
heat flowed between isothermal surfaces
with the quantity of heat per unit time
being directly proportional to tempera-
ture difference and cross-sectional area,
and inversely proportional to distance
between two surfaces. Figure 1 (ref. 6, p.
97) illustrates his reasoning.

The isothermal surface on the left at
x = « has temperature b and that at x = 4
has temperature B. The intermediate iso-
thermal surface at x has temperature y.
Assuming that under steady conditions
temperature varies linearly between the
surfaces, Fourier expressed the quantity
of heat F flowing across unit cross sec-
tional area per unit time by,

F=K =-K—=, (5)
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where the abceissa is positive to the right.
In eq. (5), linear slope is treated as syn-
onymous with gradient.

Next, Fourier considered conservation
of heat in a slab M of width Ax and
cross section S communicating with two
neighbouring slabs L and N (Figure 2),
assuming linear variation of temperature
over distances of the order of Ax.

The average temperature 7}, of slab M
at an instant of time is equal to the heat
content of the slab divided by its heat
capacity. Thus,
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But, since 7 varies linearly within the
slab, the average temperature given by
eq. (6) occurs at the mid-point of the
slab, x;s. These considerations lead to the
difference equation,
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Figure 1. Fourier's conceptualization

of thermal conductivity using heat flow in
a prism of unit cross sectional area (Fou-
rier's symbols®).
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Figure 2. Conservation of heat in a slab

M connected to two neighbouring slabs in
a prism. T,, Tyand Ty are isothermal sur-
faces.

1004

XS [TL “Ty Ty -1y ] ~ SAxpe ATy
Ax Ax At

(N

where the change in temperature A7),
denotes change in temperature of the
isothermal surface passing through mid-
point x,, of the slab.

This finite difference equation de-
scribes one-dimensional transient heat
flow in a prism in sufficient detail to ob-
tain numerical solutions when boundary
conditions and initial conditions are pre-
scribed. Obviously, computing devices
capable of handling the numerical calcu-
lations involved in  implementing
eq. (7) were not available at the time of
Fourier.

To convert eq. (7) into a differential
equation, Fourier divided through by
volume (S Ax) of the element and set
(ATy/At) = dT/dt for a sufficiently small
At (ref. 6, pp. 101-102) to arrive at,
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To extend eq. (8) to bodies of more gen-
eral shape such as a sphere or a cylinder,
Fourier did not set up difference equa-
tions. Instead. he invoked infinitesimals
in combination with eq. (8), accounted for
variation of surface area with x to formu-
late appropriate differential equations.

Fourier’s Analytic Theory of Heat
published in 1822 inspired Ohm, Fick
and Maxwell to apply his heat flow
model to electricity, molecular diffusion
and electromagnetism, each introducing
novel conceptual advancements in the
process. Ohm’ proposed the concept of a
resistance and expressed electrical flux
in terms of a difference equation, rather
than using a gradient as Fourier did.
Fick®™ conducted salt-diffusion experi-
ments with a vessel in the shape of a
truncated cone, and used a generalized
one-dimensional diffusion equation for
flow in a tube with variable cross sec-
tion,
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where ¢ is the concentration and A the
area of cross section perpendicular to
flow. Setting de/dt = 0, the exact solution
to this equation gives a generalized ex-
pression of Ohm’s law,
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where Rj, oy denotes the resistance bet-
ween inlet and outlet. Maxwell'™!! in-
spired by Faraday’s concept of lines of
force around a magnet, visualized flow
of an incompressible fluid in a resistive
medium in terms of flow lines and a col-
lection of flow tubes with orthogonal
surfaces of equal pressure'”>. Under
dynamical equilibrium, forces impelling
fluid flow were assumed to be exactly
balanced by resistive forces and flux was
effectively given by eq. (10).

Together, the contributions of Ohm,
Fick and Maxwell enable a fully self-
consistent finite difference statement of
the heat flow problem independent of the
differential equation. Recall that in set-
ting up difference eq. (7) for the prism,
average temperature was associated with
the isothermal surface exactly midway
between interfaces bounding an element.
However, when the area of cross section
is variable, linear temperature variation
along flow path cannot be assumed and
average temperature cannot be associated
with an isothermal surface midway
between bounding interfaces. With this
recognition, consider now three adjoin-
ing elements L, A and N along a tube
with variable cross section as shown in
Figure 3.

For element M bounded by interfaces
at xz5s and xp.y. average temperature at
an instant 7 is given, analogous to eq. (6)
by,
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Figure 3. Flow tube of variable cross
section with a curvilinear x-axis. T;, Ty
and Ty are isothermal surfaces.
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Given this, xp; will be that location at
which the isotherm with magnitude 7,
intersects the abcissa. Clearly, this posi-
tion will be determined by the functional
dependence of S on x. For any prescribed
variation S(x). xp; can be determined
using eq. (10) assuming known values of
TL,M at X1M and TAI,N at XMN (ref. 1 1)

Subject to these considerations, finite
difference equation (6) for element M is
to be replaced by,
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where average temperature A7), is asso-
ciated with x, as described above.

Just as eq. (7), this difference equation
is sufficient in detail to obtain numerical
solutions with prescribed boundary and
initial conditions. The flow domain is
visualized as a collection of flow tubes
with curvilinear coordinate axes coincid-
ing with suitably chosen flow lines.

For the special case of radial flow in a
cylinder of thickness H for which S(x) =
27zxH, or for radial flow in a sphere for
which S(x) = 47x%, eq. (8) can be shown
to lead to the appropriate differential
equations by dividing through by volume
and assuming small spacing of elements.

Discussion

The continuum and the differential equa-
tion greatly influence modern scientific
thinking. There are two reasons. Histori-
cally, when the absence of computing
machines stood in the way of quantita-
tively solving practical problems of
interest, the differential equation opened
up a viable new way to make quantitative
sense of the physical world. Moreover,
by casting problems algebraically, the
differential equation enabled comprehen-
sion of whole classes of problems in a
manner that would be impossible to
achieve by solving problems numerically,
on a case by case basis. The remarkably

rich body of knowledge that has accumu-
lated over the past two centuries attests
to the unique position that the differential
equation and the continuum occupy in
science.

Central to the continuum and the differ-
ential equation are the notions of points
and gradients. Both are abstract entities.
Physically, it is impossible to observe a
point. Nor is it possible to measure a
gradient. Physical measurements such as
temperature are made with instruments of
finite size and shape at discrete locations
separated by finite distances. Gradients
are inferred from these measurements.
The most powerful digital computer can-
not truly represent an irrational number.
For these reasons, the difference equa-
tion provides a physically meaningful
representation of natural phenomena,
amenable to direct numerical estimations.
Thus, remarkably, the discrete world rep-
resented by the difference equation and
the abstract world represented by the dif-
ferential equation together help us com-
prehend the world around us in ways that
neither can individually achieve.

The connections between the differ-
ence and the differential equations in
probability and in heat diffusion presented
above show that difference equations
stemming from a discrete description of
either phenomenon constitute the first
stage in setting up the mathematical pro-
blem. At this stage, one has the choice of
solving a given problem numerically
using a computing device. Alternatively,
one may invoke infinitesimals and con-
tinuous functions, and study the problem
algebraically. Each approach comple-
ments the other.

Concluding remark

The differential equation and the contin-
uum are so much a part of our thinking
that we start, de facto, with these notions
even when confronted with discrete
problems that have to be individually
described and numerically solved. We
subordinate the discrete to the continu-
ous. The thoughts presented in this work
should not be construed as a criticism or
a negation of differential calculus. On

the contrary, it is argued that the contin-
uum and the differential equation should
not negate the logical consistency of the
discrete and the difference equation. The
discrete and the continuous are two inde-
pendent, complementary visualizations
that the human mind has created to make
sense of the complex physical world of
our existence.
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