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Abstract 25 

 26 

Wind power growth makes it essential to simulate weather variability and its impacts on the 27 

electricity-grid. Low-probability, high-impact, weather events , such as a wind-drought are 28 

important but difficult to identify based on limited historical datasets. A stochastic weather 29 

generator, Imperial College Weather Generator (IMAGE), is applied to identify extreme 30 

events through long-period simulations. IMAGE captures mean, spatial-correlation, and 31 

seasonality in wind speed and estimates return periods of extreme wind-events over India. 32 

Simulations show that when Rajasthan experiences wind-drought, Southern India continues 33 

to have wind and vice versa. Regional grid-scale wind-droughts could be avoided if grids are 34 

strongly interconnected across India. 35 

 36 

Keywords: Decarbonization, Wind Energy, Stochastic Weather Generators, Wind Drought, 37 

Grid Interconnections 38 

 39 

1: Introduction 40 

 41 

As part of its progress toward decarbonization, India has plans to increase the share of 42 

renewable energy (wind and solar) in its electricity system1. Decarbonization or reduction in 43 

fossil fuel sources of energy is also important for reducing air pollution 2,3. In an electricity 44 

grid with a large share of renewables, weather variability would impact not only demand but 45 

also the supply of electricity, making it necessary to simulate weather variability and its 46 

impacts on the power system 4. In addition to normal weather variability, low probability 47 

high impact weather events can have an adverse impact on grid stability by creating large 48 

deficits in electricity generation. Successfully managing  steep ramps in generation output, as 49 
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well as a range of demands or power generations as a result of weather variability over 50 

different time scales is crucially important for reliable operation of power systems 4.  51 

 52 

Wind speed variability often arises from large-scale weather patterns 5, giving rise to 53 

correlated extreme excesses or deficits in wind generation. The statistics of such extreme 54 

events typically cannot be estimated from the instrumental record, because their relative short 55 

duration does not contain many realizations of such events. Nevertheless, such extreme 56 

weather events can be the result of underlying structure, such as the covariance in wind-speed 57 

between different pairs of locations. Stochastic weather generators can help in identifying 58 

such extremes, especially when they arise from statistics that can be estimated from shorter 59 

instrumental datasets. 60 

 61 

Sparks et al. (2018) 6 presented the Imperial College Weather Generator (IMAGE), a novel 62 

multi-site multivariate stochastic weather generator that can capture various extreme events, 63 

including heatwaves and cold spells, droughts, and excess rainfall. Stochastic weather 64 

generators typically produce single-site time series of an arbitrary length of meteorological 65 

variables, while preserving statistics of the input data, which are obtained from historical 66 

observations, reanalyses, or models. In their simplest form, weather generators produce 67 

synthetic time series for a single weather variable at a single location. However, for many 68 

applications, the geographic area considered is so large that weather variables, such as wind, 69 

can vary significantly over the domain. In such situations time series at multiple sites are 70 

desirable. The production of realistic synthetic weather data, in this case, requires the 71 

preservation of spatiotemporal correlation between sites, increasing the complexity of the 72 

problem significantly, in proportion to the number of pairs of sites. Additionally, for many 73 

applications, time series of multiple, correlated weather variables are needed. The weather 74 
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generator IMAGE is designed to be used to assess the risk of events for which the spatial 75 

distribution of weather variables is essential, such as rainfall anomalies over several months 76 

over a large watershed or heatwaves affecting several regions of a country over a period of a 77 

few days 6. This model uses multi-variate autoregressive modelling. Besides precipitation, 78 

other meteorological variables such as minimum and maximum daily temperature, solar 79 

radiation, humidity, and wind speed have been generally modelled using multi-variate 80 

autoregressive models 7.  Here we apply IMAGE for the first time to data from outside 81 

Europe and explore the risk of wind droughts across India. 82 

 83 

2: IMAGE model description 84 

 85 

We use an improved version of the IMAGE model described by Sparks et al (2018) 6. We 86 

include only a brief description of the model here, presenting a more detailed explanation of 87 

the modifications. 88 

 89 

All variables in IMAGE are modelled as latent Gaussian variables. At the start of simulation 90 

each variable is transformed using a normal quantile transformation such that it has a normal 91 

distribution. These transforms are performed separately for each month to allow for changes 92 

in the distribution from month to month. Once transformed, an autoregressive lag-1 model of 93 

the form 94 

𝑦"(𝑡) = 𝑐" + 𝛼"𝑦"(𝑡 − 1) + 𝜖"                                                          (1) 95 

is fitted separately to each month of input data for each variable at each site, where cs is a 96 

constant, αs is referred to as the memory parameter and ϵs is a noise term. These three 97 

parameters are each, in turn, modelled as latent Gaussian variables and are transformed such 98 
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that each parameter has a normal distribution for each variable at each site for each calendar 99 

month.  100 

 101 

Synthetic time series are simulated for each variable at each site by first generating correlated 102 

values of cs and αs for each month by sampling from a multivariate normal distribution. This 103 

process requires the decomposition of the covariance matrix of the autoregressive parameters, 104 

Σ, to a matrix C such that 𝐶𝐶. = Σ. In Sparks et al (2018) 6 this is achieved using empirical 105 

orthogonal function decomposition, however, in this study we instead use Cholesky 106 

decomposition, which produces the same results but is computationally faster. In general, Σ 107 

may not be positive semi-definite, which is required when sampling from the multivariate 108 

normal distribution, and therefore the nearest positive semi-definite matrix to Σ is computed 109 

using the method of Higham (1988) 8. Parameters are generated simultaneously for all twelve 110 

months in one simulated year, such that correlations between months in the same year are 111 

accurately simulated, as well as spatial correlation between sites. As well as simulating 112 

monthly parameters, the noise terms ϵs are simulated daily for each variable at each site, once 113 

again by sampling from a multivariate normal distribution. Daily values for each variable at 114 

each site can then be simulated using Eq. (1). 115 

 116 

After simulation, variables are transformed back to their original distributions using an 117 

inverse normal quantile transformation. The pairwise Pearson’s correlation coefficient of 118 

time series of variables at different sites are calculated for the simulated data and compared to 119 

the correlation coefficients of the input data. As described in Sparks et al (2018) 6, the 120 

original version of IMAGE tended to systematically under-simulate the observed spatial 121 

correlations. IMAGE has been modified to mitigate this issue using an iterative method. 122 
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Once one simulation run is complete, the covariance matrix used to generate the daily noise 123 

terms, ϵs, is adjusted by applying a correction term equal to the difference between the 124 

observed correlation and the simulated correlation for each pair of sites. The simulation of ϵs 125 

is then re-run and this cycle is iterated until a satisfactorily small error in the simulated 126 

pairwise correlations is achieved. We found that ten iterations were sufficient to reach 127 

approximate convergence. 128 

 129 

3: Data used and Methodology 130 

 131 

The analysis of this paper was based on horizontal wind speed at 100 m over surface from 132 

ERA5 reanalysis products by the European Centre for Medium-Range Weather Forecasts 133 

(ERA5) 9 for 41 years (1979 - 2019) over the Indian region. We choose 100 m above surface 134 

because the hub heights of various onshore wind turbines lie roughly at that level. The spatial 135 

resolution of the reanalysis dataset is 0.25 x 0.25 degrees, and the temporal resolution is 136 

hourly. In-situ, hourly 100 m wind measurement data of 40 weather stations from National 137 

Institute of Wind Energy (NIWE) is compared with ERA5 data to check if ERA5 could 138 

capture the overall wind speed pattern. 139 

 140 

The methodology of the paper is the following. First, we test if ERA5 could capture the 141 

overall pattern of observed wind speed over India (from NIWE measurement for 40 locations 142 

- in Figure 1, purple dots). However, we note that the goal of the paper is to present and 143 

highlight the value of the stochastic weather generator to model wind-power variability. The 144 

IMAGE model which is presented here can be used with different sources of data input, and 145 

we have chosen the best physically consistent gridded data set available to us. The input data 146 
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can change , but the tool presented here remains applicable to a variety of weather variables, 147 

depending on the context. 148 

 149 

Next, the IMAGE weather generator was validated for wind speeds over the Indian region. 150 

The model was simulated for 40 locations (in Figure 1, purple dots) over wind-rich regions 151 

located in western and southern India for daily wind speed of 4100 years. The output of 4100 152 

years of IMAGE simulation for each of these locations is segregated into 100 ensemble 153 

members, each of 41 years length (i.e., same length as input data). For each of these ensemble 154 

members, the 41 years’ daily wind speed time-series was compared with the corresponding 155 

time-series in the ERA5 input dataset. The parameters chosen for comparison are the yearly 156 

mean of the daily wind speed, seasonal variation of the monthly mean wind speed, and spatial 157 

correlation of wind speed. Three locations are used to illustrate the validation of seasonal 158 

patterns (Figure 1, green triangles), from three different high wind resource regions in India: 159 

Dhanuskodi in the off-shore region near south India, and two onshore locations in Box A 160 

(Rajasthan) and Box B (South India). We also examine if the wind speed simulated by 161 

IMAGE could preserve the Weibull distribution of wind speeds. 162 

 163 

As part of validation of the simulations from IMAGE, we also examine whether these capture 164 

the low probability extreme events of high and low wind speed. This analysis compares the 165 

return periods of various wind speed events from the ERA5 reanalysis with IMAGE 166 

simulations. This validation is done for two high wind-resource regions within Rajasthan 167 

(Box A) and South India (Box B) (Figure 1,brown squares). 168 

 169 

Following the validation as described above, IMAGE has been used to simulate 1000 years of 170 

wind speed over India based on the ERA5 reanalysis as input data. The ERA5 data has been 171 
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upscaled to 1 x 1 degree resolution, prior to serving as input to IMAGE. Based on the 172 

IMAGE simulations, we estimate the probability of low wind (“wind drought”) over different 173 

regions and all-India. We estimate the fraction of days for which the average wind speed is 174 

below 3 m/s all over India, given one of the wind-rich regions, Box A (Rajasthan) or Box B 175 

(South India) has an average daily wind speed below 3 m/s.  The 3 m/s threshold is 176 

considered because as most of the turbines have a “cut in” speed of 3 m/s, i.e., the wind speed 177 

beyond which the turbines start producing electricity. 178 

 179 

Finally, through a case study, we illustrate the benefits of having grid-connected wind plants 180 

located in different regions, as compared to the absence of any interconnection between 181 

regional grids. These benefits are assessed from the perspective of “wind drought” or “no 182 

generation days” based on the IMAGE simulation of 1000 years. We simulate wind turbines 183 

in four sets of locations from Box A and Box B for the case study.  184 

 185 

Set 1: One grid having maximum mean wind speed in Box A and another neighbouring grid  186 

Set 2: One grid with maximum mean wind speed in Box B and another neighbouring grid   187 

Set 3: Grids with maximum mean wind speed in both the boxes 188 

Set 4: Grids with second highest mean wind speed in both the boxes  189 

 190 

We simulate one 2.1 MW wind turbine at each location. The manufacturer’s power curve of 191 

Suzlon S.88-2100 10 model turbine with a rated power output of 2.1 MW is used for 192 

converting the wind speed to the wind generation. A lookup table created based on the 193 

normalised power curve is used for converting the IMAGE simulated wind speed to wind 194 

generation. Due to normalisation the rated generation from the turbine is indicated as 1. 195 
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Hence, wind generation for any given wind speed can be interpreted as fraction of the rated 196 

generation obtained at that wind speed.  197 

 198 

To compare the benefits of having wind farms located in the different sets of locations, we 199 

estimate the fraction of days in 1000 years for which there was no generation from the 200 

individual plants as well as no generation from the combination of the two simulated wind-201 

power plants. Improvement in the fraction of “no generation” days can be used as a potential 202 

parameter to assess the benefits of aggregating wind plants from different regions.  203 

 204 

Next, we assess the robustness of this parameter (fraction of “no generation” days). Twenty 205 

grids were selected from Box A and Box B, which have higher average daily wind speed 206 

compared to other grids. Equal number of grids (10) were selected from each boxes. We 207 

simulate all possible combinations of 4 grids that can be selected from among these 20 grids. 208 

One wind turbine is simulated at each location. We estimate the reduction in percentage of 209 

“no generation” days in the aggregate generation for each combination. The reduction values 210 

are estimated based on Equation 2.  211 

𝑅 = 	∑ 345
6
7
− 𝑓9                                                               (2) 212 

Where  𝑓: and  𝑓9 are fraction of zero generation days estimated for individual and combined 213 

generations from simulated wind plants respectively. R is the absolute value of reduction in 214 

fraction of zero generation days achieved by aggregation.  215 

  216 
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4: Model validation 217 

 218 

4.1 ERA5 reanalysis dataset and observation 219 

Before using ERA5 as input for IMAGE, we check if ERA5 could capture the wind speed 220 

over India. Figure 2A compares the daily mean wind speed for 40 NIWE wind monitoring 221 

stations in wind rich regions of India with ERA5. There is some underestimation of point 222 

observation of wind speed in ERA5, which might result from spatial averaging of wind speed 223 

in the gridded dataset. ERA5 captures the spatial pattern of daily mean wind speed with 224 

moderate accuracy (correlation coefficient is 0.58 with p-value ≈ 0). However, it is important 225 

to note that the focus of the paper is to present and highlight the value of the stochastic 226 

weather generator to model wind-power variability , and the tool presented here can be 227 

applied to a variety of weather variables.  228 

 229 

ERA5 outperforms ERA-Interim and MERRA-2 consistently across many parts of the world 230 

and so this reanalysis is recommended for local wind power studies11. Molina et al (2021)12 231 

show that ERA5 is able to reproduce the wind speed spectrum over Europe. The authors 232 

note12 that despite shortcomings ERA5 provides a regular spatial and temporal wind 233 

distribution that is important for renewable energy studies. Belmonte and Stoffelen (2019)13 234 

analyze differences between ERA-Interim and ERA5 surface winds fields relative to 235 

Advanced Scatterometer (ASCAT) ocean vector wind observations and note that ERA5 236 

performs better than ERA-Interim in terms of mean and transient wind errors. 237 

 238 

Figure 2B compares observed and ERA5 monthly wind speed patterns for a NIWE wind 239 

monitoring station, Devereddypalli; The red dot indicates the monthly median wind speed 240 
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from 41 years of ERA5, the vertical line shows the distribution; Although, ERA5 241 

underestimates the wind speed, the seasonal pattern is captured accurately. 242 

 243 

4.2 Mean wind speed, seasonal pattern and spatial correlation 244 

 245 

Simulations from IMAGE are able to represent the mean wind speed very well over India. 246 

The validation IMAGE simulations are performed for 40 locations each having 100 ensemble 247 

members that are as long as the input data, i.e., 41 years. A linear regression between the 248 

mean wind speed from the input data and IMAGE simulations was performed, and the bias is 249 

small, and the R square value is 0.99. This comparison is made in Figure 3A, where the dots 250 

show the median values and the vertical lines indicate the distribution of the ensemble 251 

members for each location. This distribution is narrow, indicating that each of the ensemble 252 

members approximate the mean wind-speed closely. 253 

 254 

Next, we assess if IMAGE simulations could represent the spatial correlation of wind speed 255 

between various locations. We consider Dhanuskodi as a reference location, and compare the 256 

spatial correlation coefficient between daily wind speed for ERA5 input data and IMAGE 257 

simulations between Dhanuskodi and each of the other 40 locations (Figure 3B). Each of the 258 

dots in Figure 3B indicates the median of the 100 ensemble members from simulation plotted 259 

against the ERA5 value, between Dhanuskodi and one other location. The vertical lines show 260 

the distribution among the 100 ensemble members of the correlation coefficient, for each 261 

pair. These results demonstrate that IMAGE is able to successfully represent the spatial 262 

correlation of wind speed in its simulations. The R square value of a linear regression 263 

between the correlation coefficients of input and simulated output is 0.99, and the bias is 264 

small. 265 
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 266 

Much of India experiences high wind speed during the summer monsoon months (JJAS – 267 

June, July, August and September). Figure 3C shows seasonal variation of wind speed at 268 

three locations indicated in Figure 1: Dhanuskodi, Devereddypalli and Bassi. For each 269 

location, the solid lines indicate the ERA5 inputs while the dashed lines indicate distributions 270 

from the IMAGE simulations. The crosses and the triangles show the ensemble medians of 271 

the monthly wind speed from ERA5 and IMAGE simulations respectively, and the vertical 272 

bars indicate the distribution in each case. The IMAGE simulation captures this seasonal 273 

variation quite well. 274 

 275 

4.3 Wind speed distribution pattern 276 

 277 

Wind speeds are expected to follow a Weibull distribution14. Figure 4 compares the 278 

probability distribution plot of the ERA5 input data for 41 years and IMAGE simulated wind 279 

speed for 4100 years (4100 x 365 data points) for two locations, Gudaparihar and Bassi. The 280 

red lines show the Weibull distribution fits with appropriate shape and scale factor for the 281 

distributions. This shows that IMAGE simulations could preserve the wind speed 282 

distribution. 283 

 284 

4.2 Return Periods 285 

 286 

We estimate the return periods of different values of wind speed for both the wind rich 287 

regions (Box A and Box B) shown in Figure 1. Figure 5A and Figure 5B show the return 288 

periods of different values of spatially averaged wind speed in Box A (Rajasthan) and box B 289 

(South India). The red dots show the median of the return period based on ERA5 input data 290 
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(41 years) while the blue dots show the simulated return period in 1000 years. Corresponding 291 

ranges are also indicated by the horizontal bars. The results show that the ERA5 dataset does 292 

not contain many instances of very high wind speed, owing to its limited length, and hence 293 

could not predict the return period values for these cases. However, from the IMAGE 294 

simulation such return periods can also be estimated. A similar result occurs for the case of 295 

very low wind-speed. 296 

 297 

This analysis of return periods is validated by the observation that the relatively frequent 298 

events with return periods much smaller than a year have similar distributions in both the 299 

ERA5 reanalysis and IMAGE simulations (Figure 5A and B). Furthermore, in the past 41 300 

years, in the ERA5 reanalysis Box A had a record average daily wind speed of 12.25 m/s 301 

only once and the median return period of this high wind speed is predicted as 33 years by 302 

IMAGE. Similarly, Box B experienced only one record instance of average wind speed 303 

beyond 12.25 m/s in 41 years in the ERA5 dataset and the median return period of this event 304 

is predicted as 60 years by IMAGE. For Box B IMAGE can simulate extreme low wind 305 

speed of 1.25 m/s with a return period of 30 years. This is outside of the observed range and 306 

illustrates the benefits of the IMAGE model.  307 

 308 

5: Results 309 

 310 

5.1 Probability of low wind or “wind drought” in India 311 

 312 

In a future electricity grid in which the share of wind energy is large, the probability of low 313 

wind (“wind drought”) across large parts of the grid is a critical concern. Rajasthan and South 314 

India significantly comprise India’s two distinct wind rich regions. Since wind development 315 
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is likely to concentrate substantially in these regions, we examine the association between 316 

low wind days in both of these regions. IMAGE simulations over a period of 1000 years 317 

indicate that, on days when Box A (Rajasthan) experiences low wind on average (below 3 318 

m/s), there is only 0 to 10% probability that locations in Box B (South India) will have wind 319 

lower than 3 m/s (Figure 6A). Low wind in Box A occurs in 7% of the days in 1000 years. 320 

Similarly, on the days when Box B has low wind, with average below 3 m/s, there is only 10 321 

to 20% probability that individual locations within Box A will also have low wind (Figure 322 

6B). Low wind in Box B occurs 6% of the time in 1000 years. Clearly, these two regions 323 

demonstrate a complementary behaviour from the perspective of “wind drought”. Hence, 324 

there is a possibility of avoiding grid-wide wind droughts if regional grids in these two 325 

regions are themselves connected. This is illustrated further with the help of a case study. 326 

 327 

5.2 Case Study 328 

 329 

Four sets of paired locations from Box A (Rajasthan) and Box B (South India) are chosen for 330 

the case study. As Box A and Box B demonstrate a complementary behaviour from the 331 

perspective of “wind drought”, these sets of pairs are chosen accordingly. Daily generation 332 

from one wind turbine was simulated for each location depending on the local wind speed. 333 

 334 

Set 1: One grid having maximum mean wind speed in Box A and another neighbouring grid  335 

Set 2: One grid with maximum mean wind speed in Box B and another neighbouring grid   336 

Set 3: Grids with maximum mean wind speed in each of the boxes 337 

Set 4: Grids with second highest mean wind speed in each of the boxes  338 

 339 
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We estimate the fraction of days with zero generation in the 1000 year IMAGE simulations, 340 

for the individual plants and with the combination of the two plants, one in each of the 341 

chosen grids. In the case of Set 1, the individual plants in Rajasthan have 11% and 15% of 342 

days with zero generation, while the combination of these two plants has 10% of days with 343 

zero generation. Similarly, in the case of Set 2, the individual plants in South India have 11% 344 

and 9% of days with zero generation, whereas the combination of these two plants has 5% of 345 

days with zero generation (Table 1). These two case studies demonstrate that in case of wind 346 

plants situated nearby, such as in a neighbouring grid, their aggregate generations do not 347 

show much improvement as measured by the fraction of days with zero generation. This 348 

occurs because low wind days tend to coincide for the grids that are located in the same box 349 

or within small regions. 350 

 351 

The next two sets (3 and 4) show the benefits that can be achieved by combining wind plants 352 

that are located in different regions (Box A - Rajasthan and Box B - South India). In the case 353 

of Set 3 (Combination of grids with maximum mean wind speed from each of the boxes A 354 

and B) we estimate the fraction of days with zero generation in the 1000 year IMAGE 355 

simulations for each individual locations as well as their combination. We found that while 356 

the plants in Boxes A and B experience 11% and 9% of days with zero generation, the 357 

combination of these two plants experiences only 1% of days with zero generation. Set 4 358 

considers the combination of grids with second highest mean wind speed from each of the 359 

boxes A and B. Similar estimations were made for set 4. We found that for Set 4, while the 360 

individual plants have 15% and 11% of days with zero generation, their combination has only 361 

2% of days with zero generation (Table 1).  In the cases 3 and 4, improvement in fraction of 362 

days with wind drought for the combined generation is evident because low-wind days in 363 

each of the two regions (A and B) coincide less frequently. 364 
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 365 

The next part of the case study further examines the reduction in fraction of “no generation” 366 

days, and Figure 7 depicts the results. After identifying the 20 grids with highest mean wind-367 

speeds in Boxes A and B, we simulate the aggregate generation from all possible 368 

combinations of 4 grids chosen from these 20. The boxplot indicates the reduction in fraction 369 

of zero generation days in 1000 years due to aggregation of different combinations of four 370 

wind plants from different Boxes (A and B); Combination AAAA has all four grids from Box 371 

A, while combination AABB has two grids from each boxes (Box A and Box B). The bold 372 

black line is the median for the improvement for each set of combinations. The top and 373 

bottom of the boxes indicate the 75th and 25th percentile values for each combination. 374 

Combination of plants from different regions (AAAB, AABB, BBBA) demonstrates larger 375 

reduction (0.13 to 0.14 (median)) in fraction of “no generation” days by aggregation of 376 

generation compared to plants located in same region (AAAA, BBBB) (reduction of 0.1).  377 

 378 

6: Discussion and Conclusion 379 

 380 

The IMAGE weather generator has been validated for wind-power studies over India. The 381 

weather generator has been able to reproduce the statistics of ERA5 reanalysis over the 382 

region. We tested the output for 40 grid locations, chosen because of their proximity to in-situ 383 

wind measurements from NIWE. The weather generator could correctly reproduce the mean 384 

wind and seasonality.  The key advantage of the underlying model is that it can also capture 385 

the pairwise temporal correlation between sites. We confirmed that the correlation between 386 

sites is correctly captured by IMAGE.  The model was then trained on wind-speed time-series 387 

from ERA5 reanalysis wind data to gain insight into the correlated behaviour of wind-388 

droughts in the important wind resource regions of Rajasthan and South India.  Our emphasis 389 
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in this paper is on noting the value of a new tool for studies of renewable drought over the 390 

region, using the relevant gridded datasets, not limited to ERA5. Other datasets, such as the 391 

regional high-resolution analysis, IMDAA, can also be used as inputs to IMAGE. The benefit 392 

of a stochastic weather generator is that it can simulate out-of-sample events to get a more 393 

robust estimate of, for example, 100 year and other low probability events.  A 1000-year 394 

simulation of daily wind-speeds allows us to quantify the likelihood of wind droughts 395 

anywhere in India.  396 

 397 

A potential implication of such studies is to that they can be used to quantify benefits of 398 

strong grid interconnections across weakly correlated regions. In our case study, we find that 399 

the risk of a wind drought in one region could be substantially mitigated by supplying wind 400 

from another region. We find cases where the number of days with no power generation can 401 

be dramatically reduced by a factor of 10 if the regions were interconnected. Stochastic 402 

models have long been used in the hydrological community 15,16. Our study shows that it can 403 

also be useful for wind risk assessment in India and very likely elsewhere. 404 

 405 
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Table 1. Impact of aggregation of simulated wind generation from different plants on the 473 

fraction of days with “no generation” in IMAGE simulations of 1000 years; a) Set 1: plants 474 

located in Box A; Moderate improvement in no generation days; b) Set 2: plants located in 475 

Box B; Moderate improvement in no generation days; c) Set 3: Plants located in grids with 476 

maximum mean wind speed in Box A and B; d) Set 4: Plants located in grids with second 477 

highest mean wind speed in Box A and B; In the last two cases, improvement is evident 478 

because low-wind days in each of the two regions coincide less frequently. 479 

 480 

Sets Percentage of days with “no generation” in 1000 years 

Plant 1 Plant 2 Combination 

a) Set 1 10% 14% 9% 

b) Set 2 11% 8% 5% 

c) Set 3 10% 8% 1% 

d) Set 4 14% 11% 2% 

 481 

  482 
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Figure legends 483 

Figure 1. Mean climatological wind speed at 100m above ground over India; Purple dots 484 

show 40 locations chosen for validation from wind rich regions; These 40 locations are used 485 

for ERA5 comparison with in-situ data and IMAGE validation; The green triangles indicate 486 

three locations out of these 40 locations that are chosen for validating seasonal pattern 487 

simulated by IMAGE; Brown boxes indicate the areas chosen for validation of return period 488 

of various wind speed from the simulation with respect to ERA5 input; These same regions 489 

are used for demonstrating the application of IMAGE. 490 

Figure 2. Comparison of climatology ERA5 wind speed with observation data from NIWE 491 

for year 2014; A) Comparison of daily mean wind speed for 40 NIWE wind monitoring 492 

stations in wind rich regions of India; B) Comparison of monthly wind speed pattern for a 493 

NIWE wind monitoring station, Devereddypalli; The red dot indicates the monthly median 494 

wind speed from 41 years of ERA5, the vertical line shows the distribution; Although, ERA5 495 

underestimates the wind speed, the seasonal pattern is captured accurately.   496 

Figure 3.A) Comparison of mean wind speed simulated by IMAGE with ERA5 input 497 

dataset; the R square value is 0.99, and the bias is small; Each point indicate median values 498 

for an individual location. The vertical bars show the distribution across 100 ensemble 499 

members, each being as long as the input data (41 years); The x = y line is shown in black; B) 500 

Comparison of wind-speed spatial correlation between each of 40 locations and Dhanuskodi 501 

as simulated by IMAGE, with corresponding correlations from ERA5 input dataset; the R 502 

square value is 0.99; Each point indicates median values across 100 ensemble members, 503 

while vertical bars show the distribution; The x = y line is shown in black. c) Comparison of 504 

monthly average wind speed pattern simulated by IMAGE with corresponding values from 505 

the ERA5 input dataset at three high-wind locations: Dhanuskodi, Devereddypalli and Bassi. 506 
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Figure 4. Comparison of the probability distribution and best-fit Weibull curves based on 507 

ERA5 and IMAGE, A) Gudaparihar (Weibull shape factor = 3.19, scale factor = 5.31); Based 508 

on IMAGE simulated daily wind speed for 4100 years (4100 x 365 data points); B) 509 

Gudaparihar (Weibull shape factor = 3.19, scale factor = 5.31); Based on ERA5 based 41 510 

years of daily wind speed C) Bassi (Weibull shape factor = 3.04, scale factor = 4.97); Based 511 

on IMAGE simulated daily wind speed for 4100 years (4100 x 365 data points);  D) Bassi 512 

(Weibull shape factor = 3.04, scale factor = 4.97); Based on ERA5 based 41 years of daily 513 

wind speed. 514 

Figure 5. A) Return period (x-axis) of daily average wind speed (y-axis) over Rajasthan from 515 

ERA5 reanalysis and IMAGE simulations; B) Return period (x-axis) of daily average wind 516 

speed (y-axis) over South India from ERA5 and IMAGE simulation; The points indicate the 517 

median return periods while the horizontal lines show the distribution of return periods. 518 

Figure 6. A) Fraction of days wind speed is below 3m/s in individual pixels across India 519 

when Box A (shown in black) has a wind low. Analysis is based on 1000 years of IMAGE 520 

wind speed simulation; The blue colour represents fewer days with wind-drought; B) 521 

Fraction of days wind speed is below 3 m/s in individual pixels across India when Box B 522 

(shown in black) experiences a wind low. 523 

Figure 7. Reduction in fraction of zero generation days in 1000 years due to aggregation of 524 

different combinations of four wind plants from different Boxes (A and B); Combination of 525 

plants from different regions demonstrates larger improvement in fraction of “no generation” 526 

days by aggregation of generation. 527 

 528 

 529 

  530 
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  531 

 532 

Figure 1. Mean climatological wind speed at 100 m above ground over India; Purple dots 533 

show 40 locations chosen for validation from wind rich regions; These 40 locations are used 534 

for ERA5 comparison with in-situ data and IMAGE validation; The green triangles indicate 535 

three locations out of these 40 locations that are chosen for validating seasonal pattern 536 

simulated by IMAGE; Brown boxes indicate the areas chosen for validation of return period 537 

of various wind speed from the simulation with respect to ERA5 input; These same regions 538 

are used for demonstrating the application of IMAGE.  539 

540 
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 541 

Figure 2. Comparison of climatology ERA5 wind speed with observation data from NIWE 542 

for year 2014; A) Comparison of daily mean wind speed for 40 NIWE wind monitoring 543 

stations in wind rich regions of India; B) Comparison of monthly wind speed pattern for a 544 

NIWE wind monitoring station, Devereddypalli; The red dot indicates the monthly median 545 

wind speed from 41 years of ERA5, the vertical line shows the distribution; Although, ERA5 546 

underestimates the wind speed, the seasonal pattern is captured accurately.   547 

 548 
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 550 

A. Mean wind speed B. Spatial correlation C. Seasonal pattern 

   

 551 

Figure 3.A) Comparison of mean wind speed simulated by IMAGE with ERA5 input 552 

dataset; the R square value is 0.99, and the bias is small; Each point indicate median values 553 

for an individual location. The vertical bars show the distribution across 100 ensemble 554 

members, each being as long as the input data (41 years); The x = y line is shown in black; B) 555 

Comparison of wind-speed spatial correlation between each of 40 locations and Dhanuskodi 556 

as simulated by IMAGE, with corresponding correlations from ERA5 input dataset; the R 557 

square value is 0.99; Each point indicates median values across 100 ensemble members, 558 

while vertical bars show the distribution; The x = y line is shown in black. C) Comparison of 559 

monthly average wind speed pattern simulated by IMAGE with corresponding values from 560 

the ERA5 input dataset at three high-wind locations: Dhanuskodi, Devereddypalli and Bassi.  561 
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  562 

Figure 4. Comparison of the probability distribution and best-fit Weibull curves based on 563 

ERA5 and IMAGE, A) Gudaparihar (Weibull shape factor = 3.19, scale factor = 5.31); Based 564 

on IMAGE simulated daily wind speed for 4100 years (4100 x 365 data points); B) 565 

Gudaparihar (Weibull shape factor = 3.19, scale factor = 5.31); Based on ERA5 based 41 566 

years of daily wind speed C) Bassi (Weibull shape factor = 3.04, scale factor = 4.97); Based 567 

on IMAGE simulated daily wind speed for 4100 years (4100 x 365 data points);  D) Bassi 568 

(Weibull shape factor = 3.04, scale factor = 4.97); Based on ERA5 based 41 years of daily 569 

wind speed.  570 
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A) Rajasthan Area  B) South India  

  

 571 

Figure 5. A) Return period (x-axis) of daily average wind speed (y-axis) over Rajasthan from 572 

ERA5 reanalysis and IMAGE simulations; B) Return period (x-axis) of daily average wind 573 

speed (y-axis) over South India from ERA5 and IMAGE simulation; The points indicate the 574 

median return periods while the horizontal lines show the distribution of return periods. 575 
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A) B) 

  

 577 

Figure 6. A) Fraction of days wind speed is below 3m/s in individual pixels across India 578 

when Box A (shown in black) has a wind low. Analysis is based on 1000 years of IMAGE 579 

wind speed simulation; The blue colour represents fewer days with wind-drought; B) 580 

Fraction of days wind speed is below 3 m/s in individual pixels across India when Box B 581 

(shown in black) experiences a wind low. 582 

  583 
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 584 

 585 

Figure 7. Reduction in fraction of zero generation days in 1000 years due to aggregation of 586 

different combinations of four wind plants from different Boxes (A and B); Combination of 587 

plants from different regions demonstrates larger reduction in fraction of “no generation” 588 

days by aggregation of generation. 589 

 590 

  591 

  592 




