
Une
dit

ed
 ve

rsi
on

 pu
bli

sh
ed

 on
lin

e o
n 2

9/9
/20

23

Predicting potential distribution, range change and niche dynamics for Saraca asoca 

(Roxb.) De Wilde: a threatened medicinal plant under climatic change 

Monalisa Jena1, Manas Ranjan Mohanta1, Bipin Charles2, Aravind N.A.2,  

G. Ravikanth2 and Sudam Charan Sahu1* 

1. Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada-

757003, Odisha, India 

2. Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal 

Enclave, Srirampura, Jakku, Bangalore- 560064, Karnataka, India 

 

1. Monalisa Jena 

Department of Botany, Maharaja Sriram Chandra Bhanja Deo University (Formerly 

known as North Orissa University), Baripada-757003, Odisha, India 

Email: monalisa1996jena@gmail.com  

2. Manas Ranjan Mohanta 

Department of Botany, Maharaja Sriram Chandra Bhanja Deo University (Formerly 

known as North Orissa University), Baripada-757003, Odisha, India 

Email: manasranjan.mrm@gmail.com  

3. Bipin Charles 

Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal 

Enclave, Srirampura, Jakku, Bangalore- 560064, Karnataka, India 

Email: sbcharles2012@gmail.com 

4. Aravind N.A. 

Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal 

Enclave, Srirampura, Jakku, Bangalore- 560064, Karnataka, India 

Email: aravind@atree.org  

5. G. Ravikanth 

Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal 

Enclave, Srirampura, Jakku, Bangalore- 560064, Karnataka, India 

Email:   gravikanth@gmail.org 

6. *Sudam Charan Sahu (Corresponding author) 

Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada-

757003, Odisha, India 

Email: sudamsahu.bdk@gmail.com 

 

mailto:sbcharles2012@gmail.com
mailto:aravind@atree.org
mailto:gravikanth@gmail.org
mailto:sudamsahu.bdk@gmail.com


Une
dit

ed
 ve

rsi
on

 pu
bli

sh
ed

 on
lin

e o
n 2

9/9
/20

23

Abstract 

In this Anthropocene era, understanding the impact of climate change on niche shift, species 

distribution and habitat change is increasingly important for conservation of biodiversity. In 

this respect, species distribution models (SDMs) have been considered as an important tool 

over last decade. This study illustrated distributional change, niche dynamics and distributional 

climatic shifts of Saraca asoca (Roxb.) De Wilde in India, a proven medicinal plant and a listed 

threatened species by IUCN, under different climate change scenarios using MaxEnt. The 

robustness of the model was satisfactory (AUC = 0.936) indicating a good fit. There could be 

a significant gain in suitable habitat between present and future ranging from minimum 

52,275.17 km2 (RCP 2.6) to maximum 95,994.62 km2 (RCP 4.5). In future, the suitable habitat 

range would be shifted towards colder regions of India, where cultivation of S. asoca could be 

taken up thus enabling effectively management of the natural habitat and population of the 

species.  This study will be helpful in understanding the climate change effects on S. asoca and 

its implications for conservation of the species. 

 

Key Words: Saraca asoca, Ecological Niche Models; Climate change; Distributional changes; 

Niche Overlap 
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Introduction 

 Saraca asoca (Roxb.) De. Willde (Family Fabaceae; Sub family: Caesalpinioideae) is 

an evergreen tree species with fragrant flowers and densely clustered attractive deep green 

foliage. It is a threatened medicinal plant distributed in the tropics. The plant is predominantly 

occurs in Odisha, Southern India, Assam, Central India, and in low elevation regions (up to 

750 m) in the Eastern Himalayas1. S. asoca is as a sacred plant and medicinally important tree 

in several Hindu scriptures as well as in Indian Ayurvedic system. In South-East Asian 

countries, S. asoca has been widely used in the treatment of several feminine disorders 

especially in menorrhagia2. It is also used in the treatment of a range of diseases such as uterine 

infections, dysentery, cancer, ulcers, menorrhagia especially caused for uterine fibroids, joint 

pains, paralysis, skin problems etc3. S. asoca is listed among 32 medicinal plants registered by 

National Medicinal Plant Board and Planning Commission of Government of India for research 

and development purpose4. Despite its wide distribution, the population of the species is 

fragmented in several regions of the country owing to uncontrolled harvest from wild 

populations2,5. Considering the threat and its economic importance, it has been assessed as 

‘vulnerable’ by IUCN (www.iucnredlist.org). 

With the advancement of Geographic Information System (GIS) and statistical 

modelling, ecological theories along with these tools are becoming more widely in use for 

understanding, utilizing and conserving the biological resources in the face of climate 

change6,7. In recent years, species distribution models (SDMs) have become an integral 

medium of assessment for potential distribution and for predicting suitable habitats of species8-

11. SDMs are the tool that correlate occurrence and abundance data with the regional 

bioclimatic variables to predict future and past distributions of species12. The models predict 

current distribution as input data set along with environmental correlates where species occurs 
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and predict potential distribution of target species. SDMs have become the most relevant tool 

for the estimation and evaluation of climate change impacts and species distribution 13,14.  

There are remarkable influences of environmental factors, such as temperature, soil, 

rainfall, surface humidity etc. on species distribution. Plant-environment interactions and their 

impact on plant growth has been a centre of attention for decades by researchers9,15. According 

to IPCC (2014), between 1880 and 2012, the average global surface temperature increased by 

0.85°C, and by 2100, that temperature is expected to rise between 0.3°C to 4.8°C. Temperature 

and other environmental factors play a crucial role in synthesis of different ingredients of 

plants, especially of medicinal plants16. Further, climate has become an important variable that 

determines the distribution and dominance of plant species as well and affects their growth and 

reproduction17,18. The geographical distribution of a number of medicinal plant species has 

sharply declined in recent years and some species have even gone extinct due to the lack of 

efficacious protection, effect of global warming and unscientific introduction and 

propagation19,20. In India, climate change threats on forests ecosystems were studied and found 

that about 39% and 34% of the forests are under stress that may undergo change at A2 and B2 

scenario respectively21. It may lead to changes in species composition, structure and 

productivity of the forests in India.  

In this regard, in order to identify and predict the suitable habitats for threatened species 

groups, several studies have documented significant approaches for the management and 

protection of these bio-resources22,23. There are several studies available on S. asoca, 

particularly on population status1, distribution24, medicinal properties25,26, and reproductive 

biology27. The present study focused on the following objectives: a) to determine the future 

and current distribution patterns of S. asoca, b) to study the impact of climate change (future) 

on the distribution of S. asoca, c) to emulate species migration and range dynamics and finally, 

d) to evaluate the potential climatic niche shift of S. asoca. 
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Materials and Methods 

Occurrence records 

The presence-only data were collected from primary and secondary resources. The 

primary occurrence data of the species were gathered through direct field observation and the 

geographical locations were recorded using GPS (Garmin). Secondly, the occurrence data were 

collected from various secondary resources which were; Global Biodiversity Information 

Facility (GBIF, http://www.gbif.org) and herbarium records at various scientific organizations 

viz., Botanical Survey of India (BSI); Centre for Ecological sciences (CES), IISC, Bangalore; 

CSIR-IMMT, Bhubaneswar (RRL-B) and Ashoka Trust for Research in Ecology and 

Environment (ATREE), Bangalore (Figure 1). The coordinates were assigned to record using 

Google earth and Topo-sheets published from Survey of India. The records obtained from 

secondary resources have sampling bias, which often tend to bias the niche model28. We 

reduced the bias by performing spatial thinning of occurrence records by using Sp Thin 

package implemented in R without reducing the signal of niche at specified distance of 10 km2 

resulting in 78 occurrence points for Environmental Niche Model (ENM)29,30. The spatial 

thinning is easy to execute and is an uncomplicated method to reduce the biasness of data28,31,32. 

Environmental Variables 

ENM requires all the environmental variables for prediction of species distribution. We have 

used 19 bioclimatic variable layers downloaded from http://www.worldclim.org and altitude 

(SRTM DEM) downloaded from ww.earthexplorer.org33. The data of future climatic 

conditions were obtained from http://www.ccafs-data.org for all four scenarios i.e., RCP 2.6, 

RCP 4.5, RCP 6.0 and RCP 8.5 from Global Circulation model (GCM) Hadgem2-ES34. The 

Hadgem2-ES was developed by UK Met Office Hadley Centre in 2009 which is widely used 

in constructing ENM’s for various taxa35,36. The future bioclimatic data used in this study is as 

http://www.gbif.org/
http://www.worldclim.org/
http://www.ccafs-data.org/
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per the guidelines of Intergovernmental Panel for Climate Change (IPCC) and 

recommendations of Assessment report 5 (AR5). The environmental variables were checked 

for possible correlations as they often show high co-linearity resulting in poor performance of 

the model, which often mislead37. Hence, we selected a suite of variables for ENM of S. asoca 

using Pearson’s correlation coefficient (r2 > 0.75) after pair wise comparison of all nineteen 

environmental variables and excluded the variables that are highly correlated. The refined 

variables were used for building ENM’s along with spatially thinned datasets. The 

environmental variables taken for modelling were; Alt: altitude, BIO1: Annual Mean 

Temperature, BIO2: Mean Diurnal Range (Mean of monthly (max temp - min temp), BIO3: 

Isothermality (BIO2/BIO7) *(100), BIO4: Temperature Seasonality (standard deviation *100, 

BIO5: Max Temperature of Warmest Month , BIO9: Mean Temperature of Driest Quarter, 

BIO12: Annual Precipitation, BIO14: Precipitation of Driest Month, BIO15: Precipitation 

Seasonality (Coefficient of Variation) and BIO18: Precipitation of Warmest Quarter. The 

environmental variables selected had a spatial resolution of 30 Arc Seconds often referred to 

as 1 sq. km. 

Species Distribution Modelling (SDM) 

SDMs are successfully applied in modelling of endemic species, economically 

important species, alien species across wide range of taxa14, 38, 39. In this study, Maximum 

Entropy principle built in MaxEnt algorithm V.3.3.3k was used to predict the potential 

distribution of S. asoca40,41. MaxEnt estimates the probability of species distribution in the 

grids with suitable conditions in a given landscape by contrasting the environmental conditions 

of presence only points with randomly generated 10,000 background points. We used following 

settings in MaxEnt viz., 5,000 iterations, 10 replicates, subsample, clog log output and auto 

features. The final ENMs were evaluated by randomly sub-setting 25% of occurrence records 

for testing using ROC (Receiver operating characteristic curve) and AUC (Area under curve) 
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and 75% of occurrence records for model training.  The AUC values < 0.7 indicates worse than 

random, > 0.7 – 0.8 indicates reasonable performance, > 0.8 – 0.9 signifies good performance 

and whilst, AUC > 0.9 indicates excellent performance42. Jackknife procedure was selected to 

calculate the relative contribution of each variable to the ENM. We modelled potential 

distribution of S. asoca for present and for different future scenarios i.e. RCP 2.6, RCP 4.5, 

RCP 6.0 and RCP 8.5 for 2070 (average for 2061-2080). This was to predict and compare all 

potential shifts in suitable habitat of the species in future. 

Distributional Changes 

The distributional changes and core distributional shifts were assessed for S. asoca 

according to the method of Brown (2014)43. The distributional changes and niche shift were 

assessed by converting the MaxEnt output to presence-absence (binary) maps by using 10 

percentile training presence threshold produced by MaxEnt algorithm. The MaxEnt outputs 

having grids cells below the 10 percentile training presence threshold value were classified as 

absent and above the threshold was classified as present. This information was used to calculate 

the distributional changes using SDM Toolbox44. The SDM Toolbox produces output files in 

.csv files (comma separated values) with details of area change in km2 with following 

categories: -1 = range expansion; 0= no occupancy (absence in both); 1 = no change (presence 

in both); 2 = range contraction and suite of raster for visual interpretation. 

Niche Overlap 

The niche shifts and overlap were evaluated between present and future conditions in 

India using PCA-env method as proposed by Broennimann et al., (2012)45. The PC1 and PC2 

were taken and rescaled to a 100 × 100 grid cell resolution39,45,46. In each range, the density of 

occurrence points of the target species was calculated by using kernel smoothing methods 

(using the function ‘ecospat: ecospat.grid.clim.dyn’). The calculated values were then 
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projected to PCA surface (previously rescaled) for generation of two-dimensional surface both 

for native and invasive ranges. This process is virtuous that ensures direct comparison between 

ranges by reduction of sampling biasness and missing data, and also through maximizing 

differences among environmental variables apart of any differences in range size45,47. The 

generated two-dimensional surfaces were further used to calculate the niche overlap by 

Schoener’s D. Schoener’s D is useful in measurement of similarity between two surfaces (for 

native and invasive ranges) that ranges between 0-1 (0: no overlap; 1: identical niche). The test 

for niche similarity and equivalency was done following the method given by Warren (2008)6. 

The present and future ecological niche of S. asoca was assessed through niche equivalency. 

The niche overlap value (D) was compared with a null distribution value obtained through 100 

replicates of dataset. When the observed ‘D’ value was found significantly lower (p < 0.05) 

than the simulated value, the hypothesis was rejected. The niche similarity test was conducted 

on 100 repetitions to address the similarity of environmental niches. We used Ecospat package 

implemented in R to test niche overlap48. 

Results 

Model evaluation 

The Area Under Curve (AUC) under Receiver operating characteristic curve (ROC) 

had a value of 0.9362 indicating that MaxEnt model is a good fit. The model showed 

differences in the climate suitable regions of the species in present and future indicating 

possible impact of climate change over its distribution. The jackknife analysis of variable 

contribution indicated that Bio 12, Bio 4 and Bio 5 are the top three variables contributing at 

34.4%, 33.3% and 14.6%, respectively. The remaining variables had 17.8% contribution in 

predicting potential distribution of S. asoca (Fig 2).  
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MaxEnt predictions 

In the present scenario, the possible distribution of the species was found in the Western 

Ghats, Deccan Peninsula, Odisha, Madhya Pradesh, Andhra Pradesh, Maharashtra, Karnataka, 

Tamil Nadu, Meghalaya, Mizoram and Uttrakhand. The highest suitable area with optimal 

climatic conditions was found only in the Western Ghats. In future, across all scenarios, the 

high, medium and low suitable areas could be in the Western Ghats, Odisha, Meghalaya, 

Mizoram, Nagaland, Assam, Sikkim, West Bengal, Uttrakhand, and Himachal Pradesh (Figure 

3). The suitable climatic condition for future scenarios could be similar in all cases with the 

Western Ghats as most suitable site for the species. 

Distributional changes 

The distributional change analysis revealed that there would be slight expansion 

between present and future scenario ranging from 52,275.17 km2 (RCP 2.6 – 2070) to 

95,994.62 km2 (RCP 4.5 – 2070). Further, the studied species suffers from significant loss in 

habitat range due to climate change by 1,67382.32 km2, 2,30,858.30 km2, 2,21,323.23 km2 and 

2,75,803.69 km2 in case of RCP 2.6, 4.5, 6.0 and 8.5, respectively (Table 1 and Figure 4).  

 The distributional change analysis between present and future (all scenarios, 2070) 

revealed that the Western Ghats and coastal part of Odisha will remain prominent hotspot for 

S. asoca. It loses niche in central parts of India including Madhya Pradesh, Chhattisgarh and 

Jharkhand due to impact of climate change from present scenario to future. But, the significant 

expansion of niche was predicted in Meghalaya, Assam, Tripura, Manipur and Nagaland 

towards Eastern Himalayas followed by the colder climatic areas bordering Himachal Pradesh 

and Uttrakhand (Figure 4).   
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Evaluation of niche properties 

In future, the niche overlap of 86.08% (Schoener’s D = 0.860), 78.65% (Schoener’s D 

= 0.786), 80.12% (Schoener’s D = 0.801), and 69.23% (Schoener’s D = 0.692) is found in RCP 

2.6, RCP 4.5, RCP 6.0 and RCP 8.5 in 2070, respectively. In general, there was maximum 

overlap of 86.08% in case of RCP 2.6 – 2070 (Table 2 and Figure 5). 

Under the scenario RCP 2.6, the variation in climatic conditions could be 44.13% and 

26.89% along PC1 and PC2. When compared to scenario RCP 4.5, the variation was 43.20% 

and 27.50% along PC1 and PC2, respectively. In case of RCP 6.0, the variation was 43.73% 

and 26.39% along PC1 and PC2, respectively. Lastly, in case of RCP 8.5- 2070, the variation 

observed was 42.63% and 26.51% along PC1 and PC2, respectively.  

Niche similarity and equivalency 

 In the pair wise comparisons between present versus future, the null hypotheses was 

rejected in all the scenarios for niche equivalency and for niche similarity (P < 0.05), there by 

indicating that the process of adaptation of S. asoca is in identical niches across future. Further, 

niche overlap tests indicated that S. asoca tends to adopt towards cold climatic conditions 

which is evident through the shift in niche centroid across all the scenarios (Table 2 and Figure 

5). 

Discussion 

Climate change is one of the pressing issues across the globe. Due to climate change, 

various floras and faunas are under severe threat while some species might face extinction from 

natural habitats (World Bank, 2008) and some species shift to adapt new climatic conditions 

as current habitats would be unsuitable in future49. Therefore, information on species 

distributions and the drivers of the distribution under climate change is key for effective 
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reintroduction and utilization of a species in a given landscape50. SDMs have been successfully 

applied for addressing the pressing conservation concerns38, mapping invasive risk14,51 and 

disease monitoring52 due to anthropogenic pressures and climate change53.  

Previous studies on endemic trees species of India using MaxEnt indicate that species 

tend to shift in the north-east direction in India due to climate change. It has also been noted 

that moisture plays a key role or influence in the distribution to shift towards northern and 

eastern India with higher amount of certainty, which is in agreement with our study54,55,56. The 

temperature seasonality and the maximum temperature of the warmest month were the other 

significant factors influencing the distribution of the species, in addition to annual precipitation. 

These factors have also been shown to influence species adaption and distribution across 

numerous studies57. 

Our analysis revealed that S. asoca was able to colonize or spread across the South 

India including Western Ghats, Andhra Pradesh, Tamil Nadu, Odisha, Madhya Pradesh, 

Meghalaya, Mizoram, and Uttrakhand due to cold climatic conditions (Figure 2). This indicates 

that S. asoca was adopting towards colder climatic conditions (Figure 5). The jackknife 

analysis too indicates that Annual precipitation, Temperature seasonality and maximum 

temperature of the warmest month were the predominant variables driving the potential 

distribution of S asoca (Figure 3). 

As per IPCC fifth assessment report (IPCC, 2014)58, the temperature would become 

warmer by 1.0°C – 3.0°C by 2070 (RCP2.6 – RCP 8.5).  Therefore, S. asoca would suffer 

habitat loss in those areas where temperature would likely to raise and colonize in the areas of 

colder climate conditions, which is towards colder regions such as Mizoram, Meghalaya, 

Assam, Uttrakhand, and Himachal Pradesh. Further, this is evidenced by the niche shift 

analysis. In this study, S. asoca was found to shift towards the high moisture places in North 
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East India and coastal areas of Odisha or in other words more precisely towards the high 

altitudinal regions (Figure 4 and 5). 

Other studies in India using the maximum entropy approach have noted that due climate 

change, many regions that are suitable in the present climatic conditions will become unsuitable 

while certain areas becomes suitable in future39. The spatial delineation of the habitat change 

in this study indicates that there is a significant expansion of the niche in Western Ghats, 

Meghalaya, Assam, Tripura, Manipur and Nagaland towards Eastern Himalayas followed by 

the colder climatic areas bordering Himachal Pradesh and Uttrakhand (Figure 4). The potential 

increase in the area includes 52,275.17 km2 (RCP 2.6 -2070) to 95,994.62 km2 and on the other 

hand, there is potential contraction of the climatically suitable areas by 1, 67,382.32 km2 to 2, 

75,803.69 km2 (Table 1 and Figure 4) 

Niche overlap, equivalency and similarity 

The present study compared the niche shift in S. asoca. The PCA-env analysis showed 

that there was moderate amount of variation of 26.39% to 44.13% between present and future 

indicates that the rest of the niche will be shifted from the original habitat of the species. The 

niche overlap results showed that there was maximum overlap of 86.08% in case of RCP 2.6 – 

2070, which indicates a significant loss in climatic niche for S. asoca (Table 1 and Figure 5). 

This study also analyzed the niche similarity and niche equivalency which highlighted 

clearly that the environmental niche are not similar or exactly identical for the species under 

present and future climatic conditions. On the other hand, tests also confirmed that the species 

have the increased environmental niche space at present and in future than randomly expected. 

It was also evident that there was a similarity of niche for the species in present and future but 

not the environmental conditions6,39  (Figure 5). 
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Conservation implications 

Assessing the effects of climate change on the distribution of the species using SDM is 

vital in developing effective conservation and long-term management of the species19,59,60. The 

spatial delineation of range increase and/or decrease indicates that S. asoca suffers significant 

loss in the current habitat in future across all scenarios (RCP 2.6 - RCP 8.5 - 2070) followed 

by a small gain in suitable habitats (newer areas) in all scenarios (RCP 2.6 - RCP 8.5, 2070) by 

52,275.17 - 95,994.62 km2. Further, the gain in the habitat is towards the colder parts of the 

Meghalaya, Mizoram, Assam Uttrakhand and Himachal Pradesh. Therefore, while developing 

the effective plans for identifying conservation and cultivation of this species, a due care should 

be given for in-situ conservation and identifying suitable areas for cultivation. Secondly, while 

developing the management policy, the factors like livelihood options for local people, land 

use change and climatic patterns should be given due consideration.  

MaxEnt species distribution modeling is an important tool for threatened species61 

(Gebrewahid et al. 2020). Although this study only employed MaxEnt prediction, examining 

additional machine learning techniques could improve the interpretation. Further, the lower 

number of occurrence points including the collection procedure may make the model biased. 

Moreover, the model provides an insight to the predicted distribution of S. asoca in present and 

future. 
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Table 1: Distributional changes (km2) in S. asoca between Present to 2070 

Category Present to 

RCP 2.6 

Present to 

RCP 4.5 

Present to 

RCP 6.0 

Present to 

RCP 8.5 

Range expansion (-1) 52,275.17 95,994.62 52,458.94 64,563.70 

Absence in both (0) 27,29,982.29 26,86,262.84 27,29,798.51 27,17,693.75 

Presence in both (1) 3,17,097.95 2,53,621.97 2,63,157.03 2,08,676.57 

Range contraction (2) 1,67,382.32 2,30,858.30 2,21,323.23 2,75,803.69 

 

Table 2: Result of S. asoca niche overlap analysis with Ecospat 

Niche comparison 

pairs 

PC1(%

) 

PC2(%) Schoener’s 

D 

Similarity 

(p value) 

Equivalenc

y 

(p value) 

Present – Rcp 2.6 44.13 26.89 0.860 0.009 0.009 

Present – Rcp 4.5 43.20 27.50 0.786 0.009 0.009 

Present – Rcp 6.0 43.73 26.39 0.801 0.009 0.009 

Present – Rcp 8.5 42.63 26.51 0.692 0.009 0.009 
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Figure 1: Distribution map of S. asoca in India used for modelling species distribution with 

MaxEnt 

Figure 2: Percentage contribution of variables measured using jackknife. X-axis shows 

bioclimatic variables and Y-axis shows percent contribution of each variables 

Figure 3: MaxEnt predicted potential distribution of S. asoca under Present and Future (RCP 

2.6, RCP 4.5, and RCP 6.0 and RCP 8.5). 

Figure 4: Distributional changes – Present Versus A) RCP 2.6, B) RCP 4.5, C) RCP 6.0 and D) RCP 

8.5.  Range expansion (− 1, green colour), no occupancy in present and future scenario (0, white colour), 

no change, present in both scenarios (1, yellow colour) and range contraction (2, red colour) 

Figure 5 (A-D): Niche Overlap analysis using Ecospat. The correlation circle shows the 

variation in climatic conditions on PC1 and PC2 (PCA-env analyses). The blue and red 

shadings represent density of species occurrences in current and future scenario respectively. 

The bar plots represent niche similarity and niche equivalency between present and future 

scenarios. The bold Red arrows indicates shift. Left to Right – Correlation circle, Niche 

Equivalency, Niche Similarity, Niche overlap and Shift across Temperature change. 
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Figure 1: 
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Figure 2: 
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Figure 3:  
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Figure 4:  
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Figure 5 A. 
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Figure 5 B. 
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Figure 5 C. 
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Figure 5 D. 

 

 

 

 

 


