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Abstract 31 

This study, for the first time, provides the detection of biogenic volatile organic compounds 32 

(BVOCs) emission from some common plant species found in the Western Ghats of India 33 

using branch-enclosure experiments. A custom-made dynamic chamber system was deployed 34 

to collect samples from seven different plant species. Analysis of speciated BVOCs was 35 

performed using C2-C6 and C6-C12 VOC Analyzers to determine the emission composition 36 

and relative concentrations. Isoprene was the most abundant compound, followed by ethene, 37 

propene, α-pinene and β-pinene. Among the plant species, Tectona grandis, Bambusa 38 

vulgaris and Psidium guajava showed the high fractions of isoprene emissions, Saraca asoca 39 

showed moderate emissions, and Manilkara zapota and Leucaena leucocephala showed the 40 

lowest emissions. However, Manilkara zapota and Leucaena leucocephala showed higher 41 

emissions of both ethene and propene as compared to isoprene. This study reports the 42 

emission profiles of BVOCs from Bambusa vulgaris and Saraca asoca for the first time. This 43 

study emphasizes the importance of emission flux measurements of major plant species in 44 

different forest regions of India which is necessary to develop emission inventories of 45 

important BVOCs.   46 

Keywords: Chamber experiment, Isoprene, Monoterpenes, Alkenes, Western Ghats, Tropical 47 

forests 48 
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1. Introduction 61 

Emissions of biogenic-VOCs (BVOCs) including alkenes, isoprenoids (isoprene: C5H8, 62 

monoterpenes: C10H16, sesquiterpenes: C15H24) and oxygenated VOCs (organic acids, 63 

aldehydes, ketones, alcohols, etc.) have a substantial impact on the global atmosphere1,2. 64 

Emissions from terrestrial plants have been estimated to be a major source of BVOCs, with 65 

an annual global emission of ~1150 Tg/yr3. Among BVOCs, isoprene (~70%) and 66 

monoterpenes (11%) are the most abundant compounds emitted from the terrestrial 67 

vegetation1,3-6. Among the other BVOCs, alkane and alkene (~30%) and oxygenated volatile 68 

species (~60%) have also been found to be the major compounds in some forest regions7,8. 69 

These reactive trace compounds play a key role in regional atmospheric chemistry and 70 

climate7,9. BVOCs are an important component of plant physiology and are involved in plant 71 

growth, reproduction and defence mechanisms10-12. The emissions are sensitive to abiotic 72 

environmental factors like temperature, relative humidity, CO2 and light intensity13-15. 73 

Therefore, the composition and fluxes of BVOCs emitted from the terrestrial plants are 74 

known to show strong species-to-specific variations16,17. Studies on some tropical plant 75 

species have shown that the climate change (global warming) can bring a change in BVOC 76 

emissions in response to induced stress18.   77 

Emissions from the tropical regions contribute more than 70% to the global budget of total 78 

BVOC19,20. The South Asian region, consisting of about 15% of world’s tropical forest region 79 

as of 201021, has a rich diversity of tropical plant species. However, very limited information 80 

is available on their BVOC emission characteristics17,22-26. Nonetheless, it is important to 81 

investigate the BVOC emissions from tropical vegetation in view of their key roles in 82 

chemistry-climate interactions. Among the South Asian nations, India has the largest 83 

geographical area with ~713789 km2 of area under forest cover. About 14 major forest types 84 

occupy nearly 21% of the India’s total geographical area27,28. The tropical-moist and tropical-85 

dry forests cover ~65% of the total forest area of India29. A map of the different forest types 86 

and land use/land cover of India prepared using forest type data at 5 km resolution from the 87 

Bhuvan Geo Portal (https://bhuvan.nrsc.gov.in)30 is shown in Figure 1. Despite large forest 88 

areas, the efforts to measure the emissions of BVOCs from Indian plant species have not been 89 

systematic and comprehensive. A few studies17,22-26,31-35 have reported BVOC emissions from 90 

different plant species in India. The isoprene and monoterpene emission rates from common 91 

tropical plant species of the Amarkantak-Achankmar-Biosphere Reserve (AABR) in central 92 

India are reported in17.  93 

https://bhuvan.nrsc.gov.in/
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During the last few decades, researchers have been trying to design and develop the branch-94 

enclosure systems, both static and dynamic, to quantify the emissions of BVOCs from 95 

different plants36-39. Several recent advances in branch enclosures studies, using both static 96 

and dynamic enclosures, have been made. But the dynamic enclosure is more convenient and 97 

recommended for authentic measurements of BVOC emissions40. Unlike the static enclosure, 98 

the environment and circulation can be controlled in dynamic enclosures11,41-43. In addition, 99 

some studies have also shown that the changes in temperature and relative humidity inside 100 

the static enclosures. In absence of purge flow, the temperatures inside the static chamber 101 

rises, and this may affect the true estimations of BVOCs. While such uncertainties are 102 

relatively less in case of dynamic chamber-based estimations. In static chamber there is 103 

compulsion of zero air while as it is not for dynamic one. During the last few decades, the 104 

studies have been focused using the dynamic chambers in order to overcome the uncertainties 105 

associated with static chamber based studies41,44,45. So far, the dynamic chamber has been the 106 

most widely used system for the measurements of BVOC emissions from the plant species46-107 

48, and to determine its dependence on different environmental variables10,49-52. However, lack 108 

of pre-established and tested protocol, and thus, inconsistency in enclosure systems and 109 

deployment methods leads to large variations in emission estimates across the globe53,54.  110 

In this study, we have presented the descriptions of a custom-made chamber system and its 111 

performance during the field deployments for the measurements of BVOCs emission from 112 

the seven different plant species.  The seven selected species in this study, namely: Bambusa 113 

vulgaris, Saraca asoca, Gliricidia sepium, Psidium guajava, Tectona grandis, Leucaena 114 

leucocephala and Manilkara zapota are few of the most common plant species found in the 115 

Western Ghats of India57,58. Among these, the BVOC emission compositions from the two 116 

selected plant species (Bambusa vulgaris and Saraca asoca) have not been reported 117 

previously in the literature. Thus, this study provides a test case investigation about the 118 

composition of BVOCs emitted from these plants in the Western Ghats region. And for the 119 

remaining five species, the BVOC emission properties have been reported for other 120 

parts/regions but not for the Western Ghats. The main objectives of chamber-based 121 

experiments include detection and identification of the most dominant isoprenoid and alkene 122 

compounds emitted from the selected plant species in the Western Ghats of India.  123 

 124 

2. Experiments and Results  125 

2.1 Study region 126 
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The Western Ghats of India is a global biodiversity hotspot covering the states of 127 

Maharashtra, Goa, Karnataka, and Kerala9,55. The geographical area of the Western Ghats is 128 

~160,000 km2, out of which ~57000 km2 (35.6%) is forest cover56. The Western Ghats forests 129 

are dominated by the moist deciduous, semi-evergreen, dry deciduous, and wet evergreen 130 

trees29,57. The study was conducted in the campus of the National Institute of Oceanography 131 

(NIO) (15.5oN, 73.84oE), Goa. The area experiences typical tropical monsoon climate with 132 

the annual average precipitation of approximately 3800 mm, most of which is concentrated 133 

between the months of mid-June and September27. In this region, Peltophorum pterocarpum 134 

(Peela gulmohar/Copper pod), Ficus religiosa (Peepal tree), Ficus amplissima (Nunurki tree), 135 

Mangifera indica (Mango tree), Gliricidia sepium (Mexican Lilac/Saranga), Cocos nucifera 136 

(Coconut palm), Terminalia catappa (Indian almond), Saraca asoca (Ashoka), Tectona 137 

grandis (Teak/Saguan), Tamarindus indica (English tamarind), Leucaena leucocephala 138 

(Kubabul), Opuntia ficus (Indian fig), Psidium guajava (Guava), Manilkara zapota (Chikoo), 139 

Bambusa arundinacea and Bambusa vulgaris (Bamboo) are the dominant tree species57,58. 140 

Among these, we have selected seven species of Bambusa vulgaris, Saraca asoca, Gliricidia 141 

sepium, Psidium guajava, Tectona grandis, Leucaena leucocephala and Manilkara zapota to 142 

investigate their BVOC emission characteristics (Figure 2). These selected species were 143 

mature and not affected by any pests and diseases.  144 

 145 

2.2 Design of custom-made chamber 146 

We have designed a dynamic chamber for the direct sampling of BVOCs emitted from 147 

selected plant species as shown in Figure 3. The chamber is constructed from a transparent 148 

acrylic cylinder with a length of 0.60 m and a diameter of 0.25 m. The top of the chamber is 149 

closed using an acrylic plate/disk with two holes of 12 mm internal diameter (ID).  These 150 

holes on the plate are used to insert the inlet and outlet lines. About 4 m long teflon tube (6 151 

mm id) was connected to inlet for the supply of zero-air and a 50 cm long teflon tube was 152 

connected to the outlet for air sampling. The other open side of the chamber is wrapped with 153 

teflon foil after the plant-branch is inserted. The schematic diagram and onsite deployment of 154 

the chamber setup are shown in Figure 3. We collected the samples in tedlar bags (10×15 155 

inch) made from 2 mm thick tedlar film with a capacity of 5 L (SKC Inc., catalogue no. 232-156 

05, PA 15330-9613, USA). A polytetrafluoroethylene (PTFE) hose valve and an injection 157 

port containing a teflon fluorocarbon resin septum are attached to the bag for the sample 158 

collection and analysis without contamination or loss of species in the sampling volume.  159 

 160 
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 2.3 Chamber experiments and analysis of BVOCs 161 

The chamber experiments were performed in the daytime (between 10:30 and 15:30 hr) 162 

during 13-17 October 2022. The details of sampling and ambient conditions for each 163 

experiment are summarized in Table 1. During the experiments, we collected samples for 164 

each of the representative plant species as well as from the ambient (background) air. For 165 

each plant species, an open branch was selected for the experiments to avoid underestimation 166 

of emissions due to the shaded (non-sunlight) leaves59. For each plant species, an exposed 167 

branch at heights of 1-2 m from the ground was selected and enclosed in the chamber. To 168 

avoid the impact of any physical stresses, the chamber enclosure was held stationary using a 169 

supporting platform. The branches with leaves were carefully placed inside the chamber to 170 

minimize the contact with the inner wall of the chamber. After enclosing the branch, the open 171 

back-end of the chamber was tightly wrapped using teflon foils. After that, a continuous zero-172 

air (99.9999%) flow was supplied from the cylinder at a 15 psi (1034.21 hPa) (outlet 173 

pressure) i.e. slightly higher than the ambient atmospheric pressure for 20 min into the 30 L 174 

volume of the chamber. This continuous flow of zero-air into the chamber provides uniform 175 

mixing of BVOCs emitted from the branch41. The enclosure system was not completely 176 

airtight and a continuous flow of zero-air was required to avoid the inward flow of ambient 177 

air. Due to this, some pressure might be generated in the chamber, but due to the non-178 

availability of pressure sensor, this pressure was not measured. The flow of VOC-free zero-179 

air was preferred instead of ambient air to minimize any alteration of BVOC emissions from 180 

the plants. The samples were collected after 20 min of zero-air flow, by using a pocket pump 181 

(SKC Inc., catalogue no. 22-2301, PA 15330-9613, USA) through a teflon/silicone line 182 

extended from the outlet of the chamber. The ambient air (background) samples were 183 

collected at the location of sampled species before the start of the chamber experiment.  184 

During our experiment, we carefully inserted the branches inside the chamber to avoid any 185 

injury or breaking. 186 

The analysis of speciated BVOCs including ethene, propene and isoprene present in the 187 

collected samples was performed using a C2-C6 VOC analyzer (AirmoVOC Model: A12000, 188 

Chromatotec®, Saint-Antoine, France). While monoterpene compounds including α-pinene 189 

and β-pinene were measured using a C6-C12 VOC analyzer (AirmoVOC, Model: A22022, 190 

Chromatotec®, Saint-Antoine, France). Both these instruments are based on the thermal 191 

desorption-gas chromatography coupled with a flame ionization detector (TD-GC-FID). The 192 

collected air samples were introduced into a peltier-cooled (at -15°C) adsorbent trap via a 1 m 193 

long stainless steel (SS) tube (0.25” ID). In the C2-C6 VOC analyzer, BVOCs samples pre-194 
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concentrated on the adsorbent trap are desorbed into a PLOT column (Al2O3/Na2SO4, 25 195 

m× 0.53 mm, 10 μm film thickness, Restek Corp., USA). In the C6-C12 VOC analyser, the 196 

desorbed samples were transferred into an MXT30CE column (30 m × 0.28 mm, 1 μm film 197 

thickness, Restek Corp., USA). The identification and peak area integration of different 198 

compounds were performed using VISTACHROM® software developed by Chromatotec®. 199 

Additional descriptions of VOC analyzers are provided in our previous study60. 200 

We performed multipoint calibrations on our system using standard gas mixture (lot no: 201 

1341032, Linde, USA) containing C2-C8 NMHCs at ~1 ppm with an analytical accuracy of ± 202 

5%, and also using a permeation tube (Benzene-SN:20170725-E703, Chromatotec©, France). 203 

The calibrations were performed at five different mixing ratio values between 0-10 ppb 204 

(generated using a gas calibration unit, dynamic dilution system). The sensitivity was 205 

determined as the slope of the calibration curve and the detection limit (DL) was calculated 206 

using calibration curve through the following formula (according to guidelines of 207 

International Conference on Harmonization (ICH)). 208 

  209 

DL=3.3×
σ

𝑆
 210 

where, σ is the standard deviation of the y-intercept, and S is the slope of the calibration 211 

curve.  212 

For analysis of α- and β- pinenes, system default sensitivity (response factors calculated with 213 

reference to benzene) was used. The detection limit (ppb) of ethene, propene, and isoprene 214 

were determined to be 0.167, 0.139 and 0.195, respectively. 215 

Although many VOC compounds were detected using this analysis, we focused our study on 216 

the emissions of major BVOCs including ethene, propene, isoprene, α-pinene and β-pinene. 217 

Typical chromatograms obtained from the analysis of samples collected from the chamber 218 

experiments on different selected plant species are shown in Figure 4.  219 

 220 

2.4 Plant specific emissions of BVOCs 221 

Concentrations of ethene, propene, isoprene, α-pinene and β-pinene measured during the 222 

chamber experiments for seven selected plant species are given in Table 1. Among the plant 223 

species, emissions from the five plant species (Bambusa vulgaris, Saraca asoca, Gliricidia 224 

sepium, Psidium guajava, and Tectona grandis) show high levels of isoprene, followed by 225 
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ethene, propene, α-pinene and β-pinene (Figure 5). The sum of the concentrations of these 226 

measured BVOCs was highest for Tectona grandis and the lowest for Leucaena 227 

leucocephala. Among the plant species, Tectona grandis, Bambusa vulgaris, and Psidium 228 

guajava showed higher isoprene emissions; Bambusa vulgaris and Saraca asoca showed 229 

moderate emissions; and Manilkara zapota and Leucaena leucocephala showed the lowest 230 

emissions. Manilkara zapota and Leucaena leucocephala both showed high emissions of 231 

alkenes (ethene and propene) as compared to isoprene. However, all the selected plant 232 

species showed lower monoterpene emissions compared to isoprene and alkenes.  233 

In order to have an idea about the emission profile of BVOCs, the results obtained in this 234 

study have been compared with those reported for the same or other plants in previous 235 

studies. For instance, Hakola et al. (1998)61 reported ethene, propene and 1-butene emissions 236 

from three tree species i.e., tea-leafed willow (Salix phylicifolia), silver birch (Betula 237 

pendula) and European aspen (Populus tremula), with highest emissions from willow. 238 

Previous studies have revealed that ethene is produced in almost all plant parts in varying 239 

concentrations and plays an important role in fruit ripening, flowering development, 240 

senescence and other physiological processes62-65. The emissions of isoprene and 241 

monoterpenes from some of the plant species selected in this study are also reported in 242 

previous studies17,24,26,31,35,66. Similar to present study, high BVOCs emissions are reported 243 

from Tectona grandis in the previous studies22,24. We also found significant BVOCs emission 244 

from Psidium guajava. On contrary, previous studies have reported lower BVOCs 245 

emissions17,25.  246 

The emission composition of BVOCs from Bambusa vulgaris mainly consists of isoprene. 247 

Okumura et al. (2018)66 have reported the BVOCs emissions from 14 different bamboo 248 

species with significant fractions of isoprene from all. The BVOC emission profiles of two 249 

tropical plant species (Bambusa vulgaris and Saraca asoca) have been reported for the first 250 

time in this study. However, genus and family-level studies are available in the literature 251 

(genus-level: Bambusa vulgaris; family-level: Saraca asoca)17,66. This study also revealed 252 

that the leaves of different species within the same genus are likely to exhibit similar isoprene 253 

emission characteristics. The comparison of studies for genus and family-level studies shows 254 

considerable differences in their emission characteristics17,66. Okumura et al. (2018)66 have 255 

reported Bambusa oldhamii and Bambusa multiplex as significant isoprene emitters only. 256 

Whereas in the present study, we found that Bambusa vulgaris also emits smaller amounts of 257 

other BVOCs (ethene, propene, isoprene, α-pinene and β-pinene). These variations in BVOCs 258 

emission characteristics could be due to the differences in their leaf structures, physiological 259 
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characteristics and genetic makeup. There could be some other reasons like different 260 

environmental conditions, use of different measurement methods, growth forms and stage, 261 

age, etc. might influence BVOCs emission and composition. Overall, the sum of measured 262 

BVOCs as well as relative composition of individual compound showed large variations from 263 

plant-to-plant. The result indicates that isoprene is the dominant BVOC in major plant species 264 

found in the Western Ghats. Consistently, previous studies also support the fact that tropical 265 

as well as broad-leaved species are mainly isoprene emitters, while coniferous or needle-like 266 

leaves are monoterpene emitters10,67. A comprehensive study is required to quantify the 267 

emission fluxes of BVOCs from different tropical plant species by taking account of the 268 

seasonality in key environmental parameters. 269 

 270 

3. Summary 271 

A custom-made chamber (branch-enclosure) was deployed to detect the BVOC emission 272 

profiles from seven dominant plant species (Tectona grandis, Bambusa vulgaris, Psidium 273 

guajava, Saraca asoca, Manilkara zapota, Leucaena leucocephala and Gliricidia sepium) in 274 

the Western Ghats of India. The experiments show that the newly designed dynamic chamber 275 

is well suited for the detection of BVOCs emissions using offline TD-GC-FID and online 276 

VOCs analysers. The emission samples obtained from the branch-enclosure experiments 277 

were analysed to determine the composition and concentrations of major BVOCs including 278 

light alkenes, isoprene and monoterpenes. Two plant species (Bambusa vulgaris and Saraca 279 

asoca) were investigated for the first time for the measurements of BVOC composition. 280 

Tectona grandis, Bambusa vulgaris and Psidium guajava were found to be strong isoprene 281 

emitters with smaller amounts of alkenes, α-pinene and β-pinene.  282 

Further improvements in the chamber design have been planned to measure the dependence 283 

of key environmental variables like temperature, light intensity, CO2 concentration, and 284 

relative humidity, as they play an important role in controlling BVOC emissions. The studies 285 

of emissions from tropical tree species in the Western Ghats are important for the inventory 286 

developments and subsequent use in atmospheric chemistry modelling studies. Although this 287 

is a preliminary study in the Western Ghats, the experiments clearly highlight the potentials 288 

of BVOC emissions from major plant species and provide scope for comprehensive study in 289 

future.  290 

 291 
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Table1. Concentrations (mean ± standard deviation) of different BVOCs and values of 492 

environmental parameters measured during the chamber experiments from seven different 493 

plant species.  494 



Plant species Ethene 

(ppbv) 

 

Propene 

(ppbv) 

Isoprene 

(ppbv) 

α-pinene 

(ppbv) 

β-pinene 

(ppbv) 

Sampling 

date and 

time 

    T (°C) RH 

(%)  

Solar 

radiation 

(W/m2) 

Saraca asoca 0.73±0.

19 

0.41±0.

12 

0.74±0.

09 

0.03±0.00

8 

0.03±0.00

6 

12:55 (16 

October 

2022) 

29.22±0.16 69 591.25±35.3

8 

Leucaena 

leucocephala 

0.53±0.

11 

0.45±0.

12 

0.34±0.

11 

0.02±0.00

7 

0.02±0.00

4 

12:05 (14 

October 

2022) 

29.05±0.38 62 620.08±12.9

8 

Psidium 

guajava 

0.39±0.

14 

0.44±0.

19 

6.64±1.

82 

0.01±0.00

1 

0.01±0.00

7 

13:20(14 

October 

2022) 

28.23±0.15 70 459.83±77.1

1 

Gliricidia 

sepium 

NA NA NA 0.02±0.01 0.03±0.00

1 

15:10(13 

October 

2022)  

27.96±0.19 67 216.90±112.

82 

Manilkara 

zapota 

0.9 0.49 0.31 0.01 0.01 11:45 (13 

October 

2022) 

28.39±0.52 76 625.34±15.4

2 

Bambusa 

vulgaris 

0.88 0.83 0.65 0.03 0.04 11:30 (16 

October 

2022) 

29.66±0.30 63 707.20±12.3

8 

Tectona 

grandis 

0.92 0.60 6.84 0.01 0.01 12:50 (13 

October 

2022) 

28.33±0.17 76 493.69±60.1

1 
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Figure 1. Different forest types and land use/land cover map of India using Forest type 5km 496 

grid data, National Remote Sensing Centre, ISRO, Government of India, Hyderabad, India, 497 

through the Bhuvan Geo Portal (https://bhuvan.nrsc.gov.in) 498 
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513 
Figure 2. Pictures showing the leaves of seven different plant species selected for the 514 

chamber experiments which are dominant species in the Western Ghats of India. 515 

 516 
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 524 

 525 

 526 

 527 

 528 

Figure 3. Schematic diagram (left) and field deployment (right) of the dynamic chamber 529 

system for the sampling of BVOCs emitted from different plant species. 530 

 531 
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533 
Figure 4. Typical chromatograms obtained from the analysis of samples collected from the 534 

chamber experiments on selected plant species. 535 

 536 

 537 
Figure 5. The concentrations (mean) of alkenes (ethene and propene), isoprene and 538 

monoterpenes (α-pinene & β-pinene) in the samples collected from plant species during the 539 

chamber experiments, the error bars represent the standard deviation. 540 


