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Abstract 21 

Advancements in genome mining, high-throughput sequencing, and experimental techniques 22 

have generated an enormous amount of data on natural products. This led to the design and 23 

development of advanced machine learning and artificial intelligence algorithms which 24 

simplified the hunt for novel natural product discovery in the 21st century. These algorithms 25 

could effectively analyze the chemical structure of natural products and predict their biological 26 

function. These algorithms could also effectively analyze large sets of data in a sophisticated 27 

manner. In this context, this manuscript reviews the various AI/ML algorithms employed in 28 

natural product-based drug discovery. Particular attention is paid to case studies employing AI 29 

tools in plant and microbial research. Challenges associated with the use of AI tools for natural 30 

product research have also been discussed.  31 

Keywords 32 

Artificial Intelligence, Dereplication, Drug Discovery, Machine Learning, Natural Products. 33 

Significance: 34 

The recent progress in the AI field led to the efficient mining of natural products. The existing 35 

and emerging AI/ML-based tools for effective screening of bioactive metabolites from plants 36 

and microbes were discussed. This article highlights the importance of AI algorithms in 37 

sophisticating the identification of natural products.  38 

Abbreviations 39 

ADME, Absorption, Distribution, Metabolism, and Excretion; AI, Artificial Intelligence; 40 
ANN, Artificial Neural Network; antiSMASH, antibiotics and Secondary Metabolites Analysis 41 
SHell; ARTS, Automated Resource Tracking System; BGCs, Biosynthetic Gene Clusters; 42 

BIG-SCAPE, Biosynthetic Gene Similarity Clustering and Prospecting Engine; BMRB, 43 
Biological Magnetic Resonance Data Bank; CMNPD, Comprehensive Marine Natural 44 
Products Database; CNN, Convolutional Neural Network; DNN, Deep Neural Network; 45 
DeepDTA, Deep Drug-Target binding Affinity prediction; DNP, Dictionary of Natural 46 
Products; DL, Deep Learning; ELINA, Eliciting Nature’s Activities; GNPS, Global Natural 47 
Product Social Molecular Networking; HMDB, Human Metabolome Database; HMM, hidden 48 
Markov model; HRMS, High Resolution Mass Spectrometry; IMG/ABC, Integrated Microbial 49 
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Genomes; IMS, Imaging Mass Spectrometry; KronRLS, Kronecker Regularized Least 50 

Squares; LBVS, Ligand Based Virtual Screening; MALDI-TOF, Matrix-Assisted Laser 51 
Desorption/ionization Time-of-Flight mass; MetaBGC, Metagenomic identifier of 52 
Biosynthetic Gene Clusters; MetEx, Metabolomics Explorer; MIBiG, Minimum Information 53 

about a Biosynthetic Gene cluster; ML, Machine Learning;  MN, Molecular Networking;  54 
NaPLeS, Natural Product-Likeness Software Suite and Database; NMR, Nuclear Magnetic 55 
Resonance; NPASS, Natural Product Activity and Species Source  Database; NPCARE, 56 
Natural Products for Cancer Regulation; NP-MRD, Natural Products Magnetic Resonance 57 
Database; NPs, Natural Products;  NuBBE DB, Nuclei of bioassays, ecophysiology and 58 

biosynthesis of Natural Products Database; PADME, Protein and drug molecule interaction 59 
Prediction; PDA, Photodiode Array; pHMMs, profile hidden Markov models; QSAR, 60 
Quantitative Structure-Activity Relationships; RF, Random Forest; SBVS, Structure Based 61 
Virtual Screening; SMART, Small Molecule Accurate Recognition Technology; SIMILE, 62 

Significant Interrelation of MS/MS Ions via Laplacian Embedding; SPiDER, Self-Organizing 63 
Map-Based Prediction of Drug Equivalence Relationship; SVM, Support Vector Machine; 64 
TCM, Traditional Chinese Medicine; UNaProd, Universal Natural Product Database. 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 



Unedite
d ve

rsi
on publish

ed onlin
e on 18/12/2023

4 
 

1. Introduction 79 

Artificial intelligence (AI) utilizes computers for performing complicated tasks, analyzing 80 

huge data files, and evaluating them based on advanced algorithms. It is well known that AI 81 

has a plethora of applications in various fields of research for controlling and processing tasks 82 

as it analyses effectively as well as interprets rapidly with minimized human faults and reveals 83 

complex data structures1. Recently, AI is also used by researchers for the identification of 84 

molecular characteristics, automatic processing, genome mining, dereplication, and prediction 85 

of targets and bioactivity. The fruitful advancements in machine learning (ML) and AI 86 

algorithms and information overload in databases and repositories have enabled researchers to 87 

gain free access to diverse data and utilize AI/ML techniques in the mining of natural products 88 

efficiently2. 89 

Natural products (NPs) have garnered proliferating attention in drug discovery as it is bio-90 

friendly, less toxic, and evolve collaboratively along with their active sites3,4, The high 91 

variation in the molecular structure and physicochemical properties of NPs makes them a 92 

treasured source of novel bioactive compounds with various applications in the agricultural, 93 

biotechnological, food, cosmetics, and pharmaceutical industries5,6.  94 

There are over 465,000 plant species existing on the earth of which 391,000 species are 95 

vascular plants7. One of the enthralling facts about plants is their unique metabolic pathway 96 

which corresponds to the synthesis of highly complex bioactive metabolites8. The diversity of 97 

plant metabolites is estimated to exceed 1 million with each plant contributing to more than 4.7 98 

structurally unique compounds9. The use of plant extracts as a commercial product in food and 99 

flavor, cosmetic, and pharma industries has been predicted to reach USD 59.4 billion by 202510. 100 

Plants have been alternatively used for the treatment of several diseases worldwide11. Based on 101 

this evidence, researchers are now focussing their investigations on plants and microbes’ 102 
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potential to render natural products with beneficial therapeutic effects8.  Over the last few 103 

decades, AI has been utilized in the screening of plant extracts, chemical taxonomy, chemical 104 

fingerprinting, phylogenetic studies,  predicting toxic properties and determining the structure 105 

of phytochemicals based on the spectroscopic data12.  106 

In spite of the incomparable role of NPs in drug design and discovery, conventional techniques 107 

have several challenges like extraction, screening, purification, and structure elucidation from 108 

plant and microbial sources13. The repeated identification of already identified NPs, high 109 

demand for resources, increasing manual efforts, and time-consuming tasks have restrained the 110 

interest of scientists and industries in natural product research14. However, with the recent 111 

advancement in omic technologies including proteomics, genomics and metabolomics, it is 112 

now easy to retrieve enormous data regarding the biosynthetic pathway of secondary 113 

metabolites15. At present, omics-related tools and AI-based algorithms aid in the 114 

characterization, screening, and selection of chemical structures with desired bioactivity and 115 

physicochemical characteristics16. 116 

When compared to experimental techniques that only involve in vitro and in vivo testing, 117 

computational bioprospecting methodologies have been reported as effective, low-cost, low-118 

labor, and less-time approaches17. In addition, some structural scaffolds derived from various 119 

classes of natural products, such as alkaloids, phenylpropanoids, polyketides, and terpenoids, 120 

have served as an inspiration to design new drug candidates18. The concept of AI in mining the 121 

various classes of plants and microbial secondary metabolites is illustrated in (Figure 1). 122 

2. Role of computational methods in virtual screening of bioactive metabolites 123 

Virtual screening strategies transformed the identification of novel bioactive metabolites by 124 

evaluating the in-silico large compound library aiding the exploration of their 125 

pharmacodynamics, pharmacokinetics and chemical space thus leading to less time, cost and 126 
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infrastructure involved in the discovery of novel metabolites16. Virtual screening strategies 127 

have immensely contributed to the identification of novel bioactive compounds by assessing 128 

the in-silico structural public libraries against relevant receptors through knowledge of AI and 129 

utilization of molecular models, and statistical and probability tools16.  This has the added 130 

advantages of lessening cost, time, manual efforts, and infrastructure19. These techniques 131 

employ a series of consecutive and hierarchical procedures with the goal of separating out 132 

molecules with desirable physicochemical, pharmacodynamic, and Absorption, distribution, 133 

metabolism, and excretion (ADME) properties and rejecting those that do not meet the profile. 134 

The success of discovering novel bioactive compounds is increased when these techniques are 135 

integrated with experimental methodologies20. The virtual screening strategies will utilize both 136 

the computational techniques that aim to discover novel bioactive metabolite against a specific 137 

target25. These methods should examine the chemical space of natural products in order to 138 

identify the bioactive class of compounds and structural scaffolds of known compound. Some 139 

of these methods applies less restraining structural similarity cutoff and modelling of putatively 140 

derived structures of natural products21. The 3D structure depicts the configuration of structure 141 

and binding site of ligands. Therefore, virtual screening strategies have emerged to be an 142 

essential part of discovery of novel bioactive metabolites16. The overflow of the virtual 143 

screening strategy for identifying bioactive metabolites along with conventional computer 144 

aided discovery of natural products was depicted in (Figure 2). 145 

2.1. Ligand-based virtual screening (LBVS) 146 

The LBVS approach uses a set of compounds with experimentally demonstrated bioactivity as 147 

a starting point and solely relies on the analysis of the inherent features of the compound’s 148 

structure including physicochemical, electronic, structural, and topological characteristics that 149 

are related to its bioactivity22. Quantitative structure-activity relationship (QSAR), ML 150 

algorithms, ligand-based pharmacophore modelling, cheminformatics filters, and similarity 151 
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searches based on structure, fingerprint, 3D shape were some of the computer-generated 152 

strategies utilized in LBVS23. 153 

2.2. Structure-based virtual screening (SBVS) 154 

In contrast, the SBVS strategy uses data on ligand’s recognition site in receptor’s structure as 155 

a starting point which includes the binding affinity of ligands, conformation of the receptor, 156 

charge on the surface of the molecule and configuration of molecules present in binding site24. 157 

These techniques require the receptor's 3D structure to be fully understood and, ideally, to be 158 

in intricate complex with the bioactive substance. Molecular dynamics simulation, structure-159 

based pharmacophore modeling, and molecular docking are a few of the computational 160 

techniques used in the SBVS methodology25. Virtual screening techniques are currently a 161 

crucial component in the design and invention of novel bioactive molecules. Therefore, the 162 

applications of SBVS strategies have been increased in academics as well as industries16. 163 

2.3. AI-assisted virtual screening 164 

AI has made immense progress in accelerating the identification and screening of bioactive 165 

metabolites with commercial applications. AI along with molecular modeling and 166 

cheminformatics have improved the efficiency of virtual screening strategies, thus allowing the 167 

users to explore the extremely diverse chemo-structural topographies of natural products16. AI-168 

assisted virtual screening strategies have successfully predicted pharmacokinetic properties, 169 

molecular targets, bioactivities, the permeability of compounds across the blood-brain barrier, 170 

toxicity, and side effects26. AI algorithms utilized in ligand-based strategies have shown a 171 

higher success rate in identifying novel metabolites with less time16.  Nevertheless, the virtual 172 

screening should be concerned with the decision of human experts in order to evade false 173 

findings and misinterpretation and to choose metabolites based on its unique features16. Some 174 

of those AI tools used for virtual screening and various fields of drug discovery were enlisted 175 

in (Table 1).  176 
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3. Applications of AI in NP-based drug discovery 177 

The distinct properties of NPs still astonish computational experts as well as research scientists. 178 

As expected, scientists have created many computational tools with the aid of AI algorithms 179 

and implemented them in NPs-based drug discovery27. Over the past few decades, infinite 180 

datasets on molecular structure have been created which give data on the biochemical and 181 

physiological functions of metabolites as well. The rapid advancement of AI/ML algorithms 182 

and increasing datasets of chemical structure could proffer an exceptional chance for 183 

understanding the association between the structure and function of metabolites28. Similarly, 184 

those algorithms could also predict the function of NPs from biosynthetic gene clusters 185 

(BGCs)29. For instance, the progression of NP-based drug discovery has been gradually 186 

improving with the advancement of algorithms like Biosynthetic Gene Similarity Clustering 187 

and Prospecting Engine (BiG-SCAPE) and antibiotics and Secondary Metabolites Analysis 188 

SHell (antiSMASH) for mining of genome30. On the other hand, Small Molecule Accurate 189 

Recognition Technology (SMART 2.0) could predict the function of NPs effectively31. The 190 

identification of biosynthetic gene clusters of secondary metabolites could encode diverse 191 

structures which could be effectively predicted by  192 

PRISM 432. These developments increase the availability of chemical structures of NPs which 193 

proposes a prodigious opportunity for researchers to link those structures to relevant functions 194 

using AI/ML algorithms28. Therefore, ML and AI algorithms have gradually paved the way for 195 

prominent research in the field of NP-based drug discovery. The most challenging task is the 196 

effective and accurate prediction of biological functions as innumerable NPs have been 197 

discovered in day-to-day life28. Case studies on the use of diverse algorithms in the fields of 198 

plant and microbial research have been discussed below.  199 

 200 
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3.1. Case studies on the use of AI/ML algorithms on plant  201 

Plants have always been the center of attraction owing to their numerous beneficial effects on 202 

humans33. The tribute to an immense increase in plant research extends to the wide variety of 203 

secondary metabolites synthesized in a limited range34. Nevertheless, several biotic and abiotic 204 

factors affect the biosynthetic pathway of secondary metabolite production. Therefore, a lot of 205 

time, cost, and manual effort was needed to screen these novel bioactive metabolites. 206 

Considering this, one effective alternative includes using AI, an in-silico tool for plant research. 207 

It is surprising that AI was used to even predict the best suitable culture medium and 208 

phytohormones for the in-vitro growth of plants35. For predicting the role of phytohormones in 209 

plant growth, the data from in-vitro experimental studies are exposed to computational 210 

modeling which will imply the impact of various factors33. For instance, using computational 211 

techniques, an artificial neural network (ANN) was used to predict the growth requirements 212 

and bulk synthesis of biomass in Centella asiatica36. AI predicts the correlation between the 213 

influencing factors using ANN and provides the mineral inequity in plants. Hence, by this, the 214 

factors affecting the plant’s growth could be optimized37. Recently, AI along with micro-215 

fluidics was used to speed up the process of drug discovery33. On the other hand, ML was used 216 

to increase the bioactive metabolite synthesis in Bryophyllum38. This work paved way for the 217 

synthesis of plant secondary metabolites on a larger scale. AI could also predict the extinct and 218 

endangered medicinal plants and therefore could aid in the conservation of plants with high 219 

therapeutic value39. For instance, maximum entropy model, an ML algorithm was used for 220 

predicting the distribution of a critically endangered medicinal plant, Lilium polyphyllum in 221 

Indian Western Himalayan Region40. Similarly, seven machine learning models were used to 222 

model the habitat suitability for Ferula gummosa medicinal plant in mountainous region to 223 

avoid the extinction in the future41. It could also be used for the identification of different plant 224 

leaves using an image processor and prediction of the interaction of herbal targets42. Recently, 225 
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the application of ML techniques in various fields of photosynthetic research including studies 226 

on photosynthetic pigment studies have been reviewed and discussed diverse strategies on how 227 

to employ ML in enhancing crop yield43. ML was used to increase the bioactive metabolite 228 

synthesis in plants on large scale for commercialization purposes44. ANN organizes plants 229 

based on morphological characteristics like size, color, and the dimension of leaves. ML uses 230 

ANN and SVM for predicting the interconnection between photodissociation and its 231 

bioactivity33. The different AI algorithms used in various fields of plant research like 232 

enhancement of secondary metabolites, plant tissue culture, drug design and discovery, and 233 

disease treatment were tabulated in (Table 2). 234 

3.2. Case studies on the use of AI/ML algorithm on microbes 235 

3.2.1. Natural products from microbes: Selection and screening 236 

The preliminary step in natural product discovery is the selection of the organism. Among 237 

various microbes, actinomycetes have been overmined as a significant source of therapeutic 238 

compounds which led to the repetitive discovery of known compounds. This led to a lack of 239 

identification of novel compounds2. Even though, the whole process of extraction of natural 240 

products is challenging and laborious, cautious exploration of unexplored sources enhances the 241 

chance of finding novel scaffolds2. The conventional way of isolation of natural products is a 242 

time-consuming process, hence with the advancement in AI/ML and omic techniques, it is 243 

possible to predict microbes proficiently45. For instance, the convolutional neural network 244 

(CNN) was now used to identify diverse shapes of gram-positive and gram-negative bacterial 245 

strains by high throughput imaging46. This technique could be expanded to identify and classify 246 

microbes using ML tools2. Scientists have developed, IDBac using ML for the classification of 247 

microbes based on their ability to synthesize secondary metabolites using matrix-assisted laser 248 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)47. Using this 249 

technique, the authors have categorized Bacillus subtilis depending on its capability to 250 
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synthesize cyclic peptide antibiotics. Similarly, ML models have been used to predict the 251 

antibacterial activity of fungal secondary metabolites from biosynthetic gene cluster data48. 252 

Recently, multi-omic techniques have been combined with ML algorithms for characterizing 253 

the marine metabolites datasets thus providing an unprecedented opportunity for discovering 254 

novel bioactive compounds from marine environment49. In the future, integration of AI/ML 255 

techniques with MALDI-TOF could be a possible technique to rapid the process of screening 256 

and extraction of NPs. MALDI has now emerged with imaging MS which could be utilized for 257 

mapping the spatial arrangement of secondary metabolites2.  258 

3.2.2. Genome mining 259 

Recently, next-generation sequencing and bioinformatics have paved the way for the 260 

identification of secondary metabolites with the use of genome mining50. In spite of the huge 261 

diversity of NPs, their relevant BGCs are extremely conserved in micro-organisms. These 262 

BGCs belong to classes of non-ribosomally synthesized peptides, polyketide synthases, and 263 

ribosomally synthesized and post-translationally modified peptides, terpenes and alkaloids51. 264 

This approach starts with identifying known and unknown new BGCs from genome and 265 

characterizing them for analysis. ML algorithms aid in analyzing the big data  for the prediction 266 

of these BGCs and reputed determined structures52.  267 

The AI algorithms employed in various fields of microbial research was enlisted in (Table 3). 268 

Using genome mining, gladiolin has been extracted from Burkholderia galdioli from a cystic 269 

fibrosis patient53. ML and Deep learning (DL) approach also contributed to the identification 270 

of mysterious BGCs, lanthipeptides54. With the help of genome mining and ML and DL 271 

approaches, it is possible to extract novel metabolites directly from uncultured microbes55. It 272 

is possible to identify novel compounds from human microbiota by using the hidden Markov 273 

model (HMM) algorithm. It identifies BGCs from metagenome samples56. Mostly some BGCs 274 
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exist silently which hinders the synthesis of secondary metabolites. However, it is possible to 275 

predict those genes using elicitors and ML/AI algorithms aid in expressing them57. The major 276 

disadvantage of the discovery of NPs is to identify secondary metabolites from unconventional  277 

environmental sources or biological niches without microbial cultivation. But now with the 278 

advancement of AI/ML and metagenome, NPs could be predicted directly from biotic and 279 

environmental sites56. 280 

3.2.3. Metabolite expression and synthesis: 281 

Using bioinformatic tools and genome sequencing, it is predicted that Myxococcus and 282 

Streptomyces possess huge BGCs of secondary metabolites. But these BGCs remain silent 283 

without expression58. Recently, AI/ML algorithms have been applied to screen and monitor 284 

metabolite synthesis. For instance, deep reinforcement learning of AI was used to control the 285 

coculture of microbes in a fermentor59. Through this technique, the parameters of growth and 286 

the relevant output could be regulated. Hence for the synthesis of NPs, this technique could be 287 

used to control countless factors. Similarly, a high throughput strategy was used for the 288 

activation of these silent unexpressed BGCs in several organisms. Here imaging mass 289 

spectrometry (IMS) was used to screen the elicitors for inducing the secondary metabolite 290 

synthesis. The  integration of this technique with laser ablation coupled electrospray ionization 291 

MS, led to the identification of a novel glycoprotein from Amycolatopsis keratiniphila2.  292 

 293 

3.2.4. AI/ML in the dereplication of NPs 294 

Many drugs were discovered during the golden age of NPs progress, which were used even 295 

today as therapeutic agents. Yet, the repetitive discovery of already-known compounds 296 

gradually slowed down the discovery of NPs2. Hence for the reduction of time of analysis and 297 

resource availability, rapid recognition of identified bioactive metabolites is essential. One such 298 

process widely used to rapidly identify already known metabolites in microbial extracts is 299 
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dereplication2. As the extracts of microbes were enriched with several compounds, the 300 

dereplication approach could possibly reduce repetition and offers data on novel compounds. 301 

Therefore, engagement of highly accurate ML/AI tools could make this crucial task easier. 302 

Conventionally, dereplication was done by HPLC coupled with a UV/Photodiode array (PDA) 303 

detector which has integral library databases60. But this could not give data on structure and 304 

hence instruments with advanced multispectroscopic detectors is needed for capturing the 305 

compound’s additional spectral characteristics2.  306 

 307 

3.2.5. AI/ML in Mass spectrometry-assisted dereplication 308 

MS is extensively used for NPs dereplication as it is accurate, rapid, and highly sensitive. MS 309 

has the added advantage of retrieving huge amounts of structure-related data even from very 310 

less samples using a non-targeted strategy. The integration of mass-related data with UV/PDA 311 

could be used to recognize compounds with the aid of databases like MarinLit61, NPEdia62, 312 

Dictionary of Natural Products63 and the Natural Product Atlas64. This technique was used to 313 

dereplicate the bioactive metabolites of many actinomycetes65. The efficient screening of 314 

bioactive metabolites could be achieved by LC-MS but the challenging part is the data analysis. 315 

But for this, scientists have to screen and search various UV spectra, mass spectra, and micro-316 

organisms data in various databases2. Therefore, the use of ML techniques will be a possible 317 

way to analyze and identify natural products based on their spectral data without searching the 318 

databases manually. 319 

The major disadvantage concerned with MS was that the molecular mass of several parent 320 

molecules of various metabolites overlaps depending on the MS spectra66. Hence, advanced 321 

techniques like tandem MS could detect the metabolites with high sensitivity depending on the 322 

MS/MS separation67. However, analysis of MS/MS data is a time-consuming and labor-323 

intensive manual task. Hence, ML algorithms were used recently to evaluate these hugely 324 
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resolved MS spectrums with decreased noise2. THRASH, XCMS, MS-Dial, MZmine, 325 

Decon2LS, and MetaboAnalyst are some of the AI/ML tools used for the analysis and 326 

processing of MS data2. Nowadays commercialized suppliers like Thermo Fisher and Agilent 327 

are equipped with algorithms like MassHunter and XCalibur for manual prediction of 328 

metabolites with high confidence68.  329 

Recently, molecular networking (MN) was used to dereplicate novel bioactive metabolites 330 

from diverse sources. It evaluates the complicated data files of MS spectra and images them 331 

into network depiction. GNPS has a collection of reference spectra of a wide variety of 332 

compounds deposited from various sources which could be analyzed by MN69. This integrated 333 

approach is termed as Global Natural Products Social Molecular Networking. MN identifies 334 

compounds depending on the similarity of MS/MS spectra and it links the novel metabolites 335 

with known compounds by utilization of alike fragments. Dereplication could be accomplished 336 

using MN with high success probability. For instance, around 260 microbial strains from 337 

various sources have been screened using MN. Through this, the metabolome of Pseudomonas 338 

contributed to the identification of bananamide and poaeamide B70. Similarly using MN, 339 

conulothiazole C and isoconulothiazole B were identified from blue-green algae71. Recently, a 340 

conventional metabolomics strategy coupled with integrated untargeted liquid 341 

chromatography-tandem MS along with synchronized detection of protein affinity via native 342 

MS was created. A novel inhibitor of serine protease, rivulariapeptolides was discovered using 343 

this approach72. This could be a significant way for drug discovery from natural products in the 344 

future. 345 

An advanced algorithm, DEREPLICATOR+ has been developed to aid the identification of 346 

various classes of NPs like terpenes, alkaloids, polyketides, benzenoids, and flavonoids73. The 347 

major issue involved in the identification of NPs is the extraction of bioactive metabolite during 348 
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the purification of the extract.  As a result, integrated bioinformatics coupled with bioactivity-349 

based MN was developed. This could be used for mapping the score of bioactivities74.  350 

It is easy to predict the structure of already known compounds with the available MS tools but 351 

it is difficult to predict the unknown compound’s structure. But with ML it became possible. 352 

For instance, SIRIUS 4, a web-based tool uses SVM for the identification of structure75. An 353 

improved version, ZODIAC was developed which is 16.5 times more advanced than  354 

SIRIUS 4 and could even predict the molecular formula of compounds. Then, Deep Neural 355 

Network (DNN) was developed for the prediction of unidentified metabolites for which no 356 

structure or spectra-related data was available75. Another tool, MS2DeepScore predicts the 357 

unknown compounds based on the MS similarity and identifies them by grouping69.  Hence, 358 

using MN  for dereplication would be a successful hit and therefore could be utilized in the 359 

future in combination with ML for interpretation of structure for novel compounds2.  360 

 361 

3.2.6. Dereplication of NPs using NMR 362 

Interpretation of metabolite’s structure is another crucial task. Even though unambiguous and 363 

precise interpretation of structure was provided by X-ray crystallography, its application is very 364 

limited as it requires a single crystal76. On the other hand, Nuclear magnetic resonance (NMR) 365 

was widely used spectroscopic technique which infers structural data depending on the 366 

spectrum77. NMR-based databases like CHNMR-NP, NAPROC-13, BMRB, and Spektraris 367 

were available, they possess many disadvantages and hence could not quench the natural 368 

product discovery. As a result, NP-MRD, a database based on NMR was developed which has 369 

data on >41,000 NPs extracted from over 7400 sources78.  This database is still in progress and 370 

in the future, this allows efficient elucidation of structure and also dereplicates in an automatic 371 

manner. Then, SMART 2.0 was developed which analyses and characterizes complex mixture 372 

of compounds leading to the characterization of novel NPs31. Using SMART 2.0, symplocolide 373 
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a novel macrolide was identified and annotated. Then from 1H–13C HSQC NMR spectra, 374 

SMART-miner was developed for identifying the complex metabolites using CNN. For 375 

training this tool, around 657 chemical compounds retrieved from Biological Magnetic 376 

Resonance Data Bank (BMRB) and Human Metabolome Database (HMDB) have been 377 

analyzed. This tool could identify these molecules from amalgamated mixture with 88% 378 

accuracy.  379 

Recently, DEEP picker, an AI tool based on DNN was developed for the analysis of the 2D 380 

NMR spectrum79. 80 used the ML technique for the prediction of various classes of NPs from 381 

13C-NMR spectral data. As far as dereplication is concerned, High-resolution mass 382 

spectrometry (HRMS) is preferred rather than NMR owing to its high sensitivity. But NMR 383 

could predict the optical isomers accurately and identify organic molecules in the extract81. 384 

MixONat based on 13C-NMR was developed for the identification of structurally similar NPs 385 

and optical isomers. This dereplication software was able to identify xanthones from 386 

Calophyllum brasiliense82. Another tool based on 1H-NMR, Eliciting Nature’s Activities 387 

(ELINA) was developed for the detection of the chemical characteristics correlating with the 388 

biological activity prior to extraction of compounds. Hence, this tool identified novel lanostane 389 

triterpenes from the fungal extract of Fomitopsis pinicola83.  390 

 391 

4. Other applications of AI/ML tools 392 

4.1. Prediction of bioactivity and identification of target using AI/ML 393 

Generally, the bioactivity of NPs was identified depending on the phenotypic characteristics or 394 

screening by high-throughput techniques owing to the diverse structures and extensive 395 

chemical gaps84. On the other hand, experimental identification of targets was conventionally 396 

performed using chemical proteomics and genomics. But validation of targets was difficult, 397 

time-consuming, and requires more effort85. Hence, computational strategies in turn could 398 
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reduce these constraints and limit the search for target screening86. The various applications of 399 

AI algorithms in various fields of NPs based drug discovery is depicted in (Figure 3). 400 

When compared to conventional ligand-based and structure-based computational identification 401 

of targets, AI/ML-based strategies have several pros and hence can be engaged as a successful 402 

approach for the identification of NP targets2. Recently, advanced features of AI algorithms 403 

improve the prediction of binding affinity by considering the similarity between the drug 404 

compound and its relevant target. The widely used AI/ML tools for target identification and 405 

bioactivity prediction were enlisted in (Table 4). From a research standpoint, the validity and 406 

accuracy of such algorithms remain a key limitation. In order to increase the accuracy and 407 

precision of AI-based algorithms through selected and substantial data input, a comprehensive 408 

study should be conducted87.  409 

4.2. Prediction of physicochemical properties 410 

It is eminent that each compound possess diverse physicochemical properties like solubility, 411 

degree of ionization, partition, and permeability co-efficient that may interfere with the 412 

molecule’s pharmacokinetic qualities and drug-target binding effectiveness88. To aid this, 413 

many AI-based techniques for predicting the chemical compound’s physicochemical 414 

characteristics have been created. Molecular fingerprinting, SMILES format, Coulomb 415 

matrices, and potential energy measurements are among those AI-based tools89. A QSAR 416 

model was recently created by 90 to forecast the six different physiochemical characteristics of 417 

eco-friendly agents taken from environmental protection agency data. Later, six AI-based 418 

systems for the prediction of chemical absorption in the human digestive tract were developed. 419 

SVM, k-nearest neighbor, probabilistic neural network, ANN, Partial least square (PLS), and 420 

linear discriminate model are among the constructed approaches. SVM has a greater accuracy 421 

at 91.54% than the other models mentioned above91.  An ML-based model was created in 2017 422 
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by Zang et al. to predict the physicochemical characteristics of foreign chemicals like 423 

bioconcentration factors, solubility in water, octanol-water partition co-efficient, melting and 424 

boiling point and vapor pressure87.  425 

Furthermore, several AI-based tools like ALOGPS 2.1 (http://www.vcclab.org/lab/alogps/), E-426 

BABEL (http://www.vcclab.org/lab/babel/0), E-DRAGON 427 

(http://www.vcclab.org/lab/edragon/), PCLIENT (http://www.vcclab.org/lab/pclient/), ASNN 428 

(http://www.vcclab.org/lab/asnn/), ChemSpider (http://www.chemspider.com/), SPARC 429 

(http://sparc.chem.uga.edu/sparc/) and OSIRIS property explorer (https://www.organic-430 

chemistry.org/prog/peo/) have been created. The quantitative structural toxicity of tyrosine 431 

derivatives intended for effective, safe inflammatory treatment was further predicted by 92 using 432 

ORISIS property explorer. Only 19 of the 55 bioactive compounds were found to be effective 433 

cyclooxygenase-2 inhibitors, according to the data generated by ORISIS. In a similar vein, 434 

models based on Random Forest (RF) and DNN were developed to forecast human intestinal 435 

absorption of various chemical substances. Therefore, it must be inferred from the instances 436 

that the AI-based strategy significantly contributes to drug discovery and development through 437 

the prediction of physicochemical features87. 438 

 439 

5. Challenges and limitations in NP-based drug discovery 440 

5.1. Virtual screening-exclusion of compounds 441 

In comparison with the application of conventional methods for the extraction of novel 442 

bioactive metabolites, computational strategies were known to be prognostic, low-cost, and 443 

beneficial. Nevertheless, regardless of these advantages, they also have challenges and 444 

limitations and mostly these techniques were susceptible to bias93.   Analysis of diverse 445 

chemical structures and bioactivity of NPs by similarity-based computational tools mostly 446 
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provides biased data as it has a postulation that novel compounds might be similar to well-447 

known bioactive compounds93. This hypothesis mostly leads to errors in the construction of 448 

models and hence can decrease the diversity of newly identified chemical structures. Hence, it 449 

is obvious that some compounds could be excluded from the screening process and could 450 

possibly lessen the exploration of novel chemical compounds with unique biological activity. 451 

5.2. Generation of inaccurate data 452 

The major challenge associated with NP-based drug targets was exploring and identifying the 453 

mechanism of action and their relevant side effects which is an expensive and time-consuming 454 

process94. In spite of several advantages, use of AI/ML tools could generate inaccurate data, 455 

and only already known targets can be predicted and validated95. On the other hand, the 456 

selection of a drug molecule depends on whether it has any side effects or toxicity. But this 457 

requires a prolonged time and it is an expensive process. This requires validation of the 458 

molecule by in-vitro and in-vivo experimental studies for assessing the toxicity2. Hence, 459 

computational toxicology could be used for screening several compounds simultaneously thus 460 

reducing the time of performing animal studies. But this could also generate inaccurate data2.  461 

 462 

5.3. Molecular featurization (Technical issue)  463 

Over past few decades, infinite datasets on molecular structure have been created which give 464 

data on the biochemical and physiological functions of metabolites as well. The rapid 465 

advancement of AI/ML algorithms and increasing datasets of chemical structure could proffer 466 

an exceptional chance for understanding the association between the structure and function of 467 

metabolites26. Similarly, those algorithms could also predict the function of NPs from BGCs29.  468 

The most challenging task is the effective and accurate prediction of biological functions as 469 

innumerable NPs have been discovered in day-to-day life28. The next challenge for the 470 
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development of successful ML/AI models lies in the featurization of molecular structures of 471 

NPs. Molecular featurization is a process that converts the chemical structure of NPs to 472 

computer-readable formats96. NPs predominantly exist as high molecular weight compounds 473 

with diverse physicochemical properties and complex structures. On the other hand, these 474 

molecular featurization tools are designed and optimized for targeting smaller molecules. 475 

Hence, current featurization tools could not be used when the structural and physicochemical 476 

properties of NPs deviate from those of smaller molecules28. Firstly, the performance of 477 

existing featurization tools could be examined with different NPs having complex structures. 478 

Based on this data new featurization tools may be developed which will tailor structurally 479 

complex NPs in a better way. 480 

5.4. Interpretation of predicted data 481 

The next challenge lies in the interpretations of data predicted by AI/ML models. As NPs 482 

possess numerous biological functions, understanding the bioactivity and mechanism of the 483 

action itself is a complicated task as many factors were involved. Therefore, the predicted 484 

outcomes from ML/AI models should be explicable for a proper understanding of NPs 485 

biochemical properties28. ML coupled with biochemistry approaches could employ various 486 

computational tools for predicting the cellular, molecular and biological activities of NPs. 487 

Therefore bioactivity, targets, and toxicity predicted by AI/ML tools could provide hints on the 488 

mechanism of action of NPs. 489 

6. Conclusion and future prospects 490 

Natural products have instigated many successful drug discovery stories but challenges like 491 

limited yield, unfriendly extraction, unidentified functions, unpredicted targets, and intricate 492 

chemical synthesis contributed to the decline of NPs-based drug discovery. AI and ML 493 

algorithms gradually integrated various stages of NP drug discovery by assisting in finding and 494 
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elucidating the bioactive structures and capturing the molecular patterns of these structures for 495 

target prediction. In conclusion, we extensively review the latest AI/ML algorithms employed 496 

in various fields of NP-based drug discovery. These applications have been extensively 497 

growing in the last few decades, fuelled by the exceptional success of AI/ML-based approaches 498 

in diverse fields of science and technology. 499 

The advancement of AI/ML techniques has unlocked innovative approaches to determine novel 500 

industry-oriented applications of NPs by just minimizing the economic and time constraints 501 

required for the exploration. Yet, AI algorithms could not be utilized completely for the 502 

successful exploration of NPs. The extensive diversity and structural complexity of NPs impose 503 

a great challenge for computational experts to develop a novel AI algorithm that could analyze 504 

different classes of metabolites efficiently. Therefore, the design and development of an AI 505 

tool that could analyze enormous data and different classes of secondary metabolites efficiently 506 

could contribute to fruitful outcomes in the future.   507 

There exists a significant gap between wet lab (experimental) and computational research. 508 

Researchers from NPs research and computational experts could collaborate for successful 509 

characterization of the NPs function. Scientific researchers will understand the objective of the 510 

study and could elaborate the complicated NPs physicochemical properties whereas experts in 511 

computers could develop suitable AI tools and featurization methods for better predictions. 512 

Finally, NPs scientists could analyze and validate those predictions generated by AI. Therefore, 513 

collaboration between diverse fields of research may contribute to the efficient mining of NPs 514 

and better characterization of their functions. 515 

 516 

 517 

 518 
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Table 1. Application of AI/ML tools in virtual screening and various fields of NP-based drug 1084 

discovery 1085 

 

Application 

 

 

Tool and 

software 

 

Method 

 

Features 

Structure and 

Ligand-based 

Virtual 

Screening 

AutoGrow 4 Genetic algorithms Optimization of Lead compound and 

de novo drug design97 

LSA Conventional  

Similarity and a 

substructure match 

algorithms (GMA) 

A structure-based alignment tool for 

virtual screening of pharmaceutical 

compounds98 

 

LigGrep Machine learning Filtration of docked models for 

enhancing the hit ranks of virtual 

screening99 

Trix X Machine learning Structure-based molecular indexing 

tool that is enabled for the fastest and 

largest virtual screening87 

Drug Finder Machine learning In-silico virtual screening tool 

intended for validation while 

screening the compounds100 

LS-align Machine learning  A high-throughput screening method 

used to generate fast, reliable, and 

accurate atom-level structural 

alignment  of ligands101 

DEEPScreen Convolutional neural 

networks 

A high-performance tool used for the 

prediction of the binding of the drug to 

target102 

Drug design and 

Discovery 

 

 

 

QSAR modeling 

ChemDes Chemopy, Pybel  An integrated online software used for 

the computation of molecular 

descriptors and fingerprints103 

ChemGrapher Deep Learning Recognizes chemical compounds 

using optical graph104 

ChemSAR ChemoPy Generates Molecular SAR model 

benefiting cheminformatics105 

ANFIS Neuro-fuzzy modeling A QSAR model used for the 

evaluation of physicochemical 

characteristics of chemical 

molecules106 

OntoQSAR Machine learning  Interpretation and evaluation of 

biological and chemical data107 

Drug 

repurposing 

GIPAE Gaussian interaction 

profile 

A drug repositioning tool used to 

recognize novel signs for existing 

drugs108 

DrugNEt Machine learning Integrates heterogenous information 

by prioritizing the interaction of drugs 

against target109 

Drug 

repurposing 

RCDR Collaborative filtering 

model 

Gives high preference for the 

candidate drugs against diseases110 
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DrPOCS Machine learning Predicts the interaction of drugs and 

diseases based on projection onto 

convex42 

Pred-binding Vector machine Predicts the binding of proteins to 

ligand on a large scale111 

Physico-

chemical 

properties and 

bioactivity 

prediction 

CSM-lig Machine learning A web-based tool to compare and 

evaluate affinity of proteins to small 

molecules112 

mCSM-AB Machine learning Quantifies the mutational effects on 

affinity of proteins to small molecules 

in genetic diseases113 

Chembranch Machine learning Publicly available, integrated 

Cheminformatics tool114 

MDCK pred Regression model Prioritizes small molecules by 

calculating MDCK permeability115 

COSMOfrag Quantum Chemistry A high-throughput technique used for 

predicting ADME properties and 

similarity screening116 

Vienna 

LiverTox 

Machine learning 

classification model 

Identifies and recognizes 

pharmacokinetic properties117 

RosENet Convolutional neural 

network 

Predicts the accurate binding 

efficiency of proteins with ligands118 

DeepPurpose  Deep Learning Open library available for predicting 

the interaction of drug to target119  

Molecular 

Target 

prediction 

PASS NB Predicts the bioactivity, mechanism of 

action and pharmaceutical 

properties120 

TiGER Multiple SOMs It qualitatively predicts targets on a 

larger scale121 

STarFish MLP, kNN Predicts the prediction of small 

molecule binding to target95 

SPiDER SOMs Identification of novel compounds in 

chemical biology and evaluates the 

probable side effects121 

SEA Kruskal algorithm Prediction of chemical similarity of 

proteins to ligands122 
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Table 2. Case studies on the utilization of AI algorithms in various fields of plant research 1095 

Algorithm Plant Applications 

Enhancement of secondary metabolites in plants 

Least square-

Support vector 

machine 

Chrysenthenum 

morifolium 

AI was used to estimate the total 

flavonoid and polysaccharide 

content123 

Artificial neural 

network 

Bryophyllum sp. To maximize the production of 

chemical synthesis38 

Real coded genetic 

algorithm (MI-

LXPM) 

Gardenia To predict the optimal ideal 

condition for extraction of total 

phenolic compounds124 

Neurofuzzy 

inference system 

genetic algorithm 

Corylus avellane To optimize the secondary 

metabolite concentration125 

Plant Tissue Culture 

Multilayer 

perception 

- To optimize the surface 

sterilization protocol without 

causing damage to explant126 

Neuro-fuzzy logic Prunus armeniaca To predict the number of shoot 

multiplication using hormones, 

nutrients and vitamins127 

Intelligent image 

analysis by ANN 

Solanum tuberosum To predict the characteristic 

features of shoot128 

Genetic algorithm 

(AI-based 

modelling) 

Wrightia tinctoria To optimize the environmental 

conditions to utilize charcoal for 

rhizogenesis and to lower 

caulogenesis129 

Backpropagation 

algorithms in 

artificial neural 

network 

Cuminum cyminum To predict the formation of 

callus and to determine its 

volume and fresh weight130  

Backpropagation 

Neural network 

Chlorophytum 

borivilianum 

To predict the development of 

shoots in fermentor and  fresh 

weight of plantlets131 

Multivariate 

Adaptive 

Regression Splines 

Algorithm  

Fragaria ananassa To predict the nutrients required 

for culture of strawberry and to 

predict the responses like shoot 

quality, multiplication and leaf 

color responses132 

Multilayer 

perception 

 Pinus taeda To predict the impact of nitrogen 

source on organogenesis of 

shoot133 

Multilayer 

perception-based 

modeling 

Vitis vinifera To optimize the factors affecting 

in-vitro root formation134 

ANN, fuzzy logic 

and genetic 

algorithms 

Actinidia arguta. To reduce mineral and salt 

content for enhancing the 

micropropagation135 
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ML algorithms and 

artificial neural 

network 

Gyrinops walla Gaetner To predict the chemical 

composition for production of 

callus136 

Neurofuzzy logic Prunus sp. To predict the best medium for 

rootstock micropropagation137 

Regression analysis 

and artificial neural 

network analysis 

Pyrus communis To predict the in-vitro culture 

medium macronutrients for 

rootstock propagation and to 

analyze the growth parameters 

like shoot tip necrosis, shoot tip 

length, explant growth rate, 

vitrification and chlorosis138 

Neural networks 

and genetic 

algorithm  

Cucumis melo To optimize the in-vitro culture 

condition139 

 

Drug design and discovery 

Algorithm Target Application 

ML algorithm Drug-induced liver injury  To predict the upsurge/reduction 

in the efficacy of multiple drug 

interactions and to evaluate the 

inhibition rate of drugs140 

ML algorithm-

Random Forest and 

support vector 

machine  

Drug-ADR association To identify different adverse 

drug reactions and to predict the 

intensity of outcome and 

achieved a 91% accuracy rate in 

predicting the death causing 

adverse drug reactions141 

Support vector 

machine  

Schizophrenia and 

depression/anxiety  

Drug repositioning-To predict 

the indications for disease based 

on the drug expression 

profiles142 

Supervised 

learning (SVM)-

neural network 

Drug-ADR association To predict adverse drug 

interactions143 

   

Machine learning 

algorithm 

Classification of Chinese 

herbs 

To determine the molecular 

features of 646 Chinese herbs 

and their active constituents by 

structure-based fingerprints and 

ADME properties42 

   

Logistic regression, 

random forest, and 

support vector 

machine algorithms 

Drug repurposing To explore the unknown 

medicinal properties of herbal 

bioactive compounds and has 

identified novel indications for 

20 known drugs and 31 herbal 

compounds144 

Regularised least 

square (semi-

Drug repurposing To identify the novel 

pharmacological significance of 
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supervised based 

new modelling) 

existing drugs for viral 

infections145 

Machine learning 

approach 

Drug discovery To elucidate the medicinal value 

of Xiaoxuming decoction to be 

utilized as a neuroprotective 

agent146 

Ontology-based AI 

model 

AI-based TCM screening  To predict the side effects of 

prescription147 

AI in disease treatment 

Neuro-fuzzy Treatment of disease To evaluate the pharmacological 

aspect of medicinal plants for 

the treatment of obesity148 

Fuzzy logic Disease treatment To group plants with anti-

tuberculosis properties based on 

botanical data149 

Convolutional 

neural network 

Rheumatoid arthritis  To predict the significance of 

traditional Chinese medicines 

against inflammatory 

rheumatoid disease150 

Network 

pharmacology-

based prediction 

Cardiovascular disease To predict the mechanism of 

phytocompounds of Radix 

Curcumae against 

cardiovascular diseases151 

Machine learning 

algorithm 

Pain disorders To predict the mechanism of 

action of herbal 

phytocompounds at the atomic 

level against algesia152 

Other fields of medicinal plant research 

Convolutional 

neural network 

Compound-target 

interaction of natural 

products 

To generate scoring energy 

functions of proteins and their 

ligands. Has an image processor 

to assist protein-ligand binding. 

To optimize the scoring for 

stable conformations153 

Image-based 

convolutional 

neural network 

TCM To demarcate diverse species of  

Zanthoxyli pericarpium for 

aiding traditional Chinese 

medicines154 

ML algorithm Biomass production To predict the accumulation of 

biomass in microalgal 

suspension155 
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Table 3. Case studies on AI algorithms used for microbial research tasks 1102 

Task AI/ML Tool Features 

Identification of microbes 

MALDI/TOF SpeDE Identifies microbes based on unique 

characteristics rather than universal 

similarity156 

IDBac A bioinformatic tool that amalgamates 

integral protein and its metabolite for  

detection157 

 

Genome mining 

Databases on 

Biosynthetic 

gene clusters  

antiSMASH  

database  

Most common and inclusive source on 

secondary metabolites30 

 

Bactibase An open-access database exclusive for 

of bacterial antimicrobial peptides158 

MIBiG Large curated database on biosynthetic gene 

clusters159 

IMG-ABC Database on biosynthetic lab clusters 

retrieved from metagenomes and microbial 

genomes160 

BGC 

identification 

from 

genomes 

antiSMASH 

database 

Detects biosynthetic gene clusters based on 

profile Hidden Markov Models30 

  

PRISM Identifies biosynthetic gene clusters, 

biological activity and cheminformatic 

dereplication161 

ARTS To prioritize the most capable gene cluster 

that encodes antibiotics with novel mode of 

action162 

BGC 

identification 

from 

metagenome 

MetaBGC Algorithm used to detect BGC in data of 

metagenomic sequencing directly163 

DeepBGC A deep learning approach based on genome 

mining to predict BGC clusters164 

Metabolite production and expression 

Elicitor 

screening 

MetEx UPLC-MS based high throughput screening 

of elicitors165 

Natural product dereplication and structure elucidation 

Databases DNP It contains the physical and chemical 

properties of more than 226,000 natural 

products63 

NPEdia Exclusive database for natural products166 

StreptomeDB Contains chemical and biological data on 

natural products isolated from 

streptomyces64 

MarinLit Exclusive database on marine natural 

products167  
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NuBBE DB Contains over 2200 chemical structures of 

diverse natural molecules acquired from 

various Brazilian habitats168 

CMNPD Inclusive and organized data on natural 

products derived from marine sources 

Contains over 32000 structures of marine 

compounds along with its physical, chemical 

and ADME properties169 

NaPLeS Free access MySQL database of natural 

compounds that process NP-likeness score 

of huge compound libraries170 

UNaProd Online database of natural compounds that 

was traditionally used as medicine by 

Iranians. Contains data on more than 2696 

natural compounds derived from plants, 

animal and minerals171 

MS-based 

dereplication 

DEREPLICATOR  Integration of molecular network with 

dereplication73 

SIRIUS-4 To identify molecular structures from MS172 

GNPS Online database that contains sample 

information for untargeted MS69 

NMR-based 

structure 

elucidation 

NP-MRD Large NMR database containing more than 

41,000 natural products78 

DEEP picker Deconvulutes the complicated 2D NMR 

spectra based deep neural network79 
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Table 4. Identification of targets and prediction of bioactivity of natural products using 1117 

AI/ML 1118 

Tool Features Application 

BANDIT Bayesian based ML 

approach 

Prediction of drug binding targets. 

Predicted more than 4000 molecules 

with 90 % accuracy 

Validation of 14 new microtubule 

inhibitors173  

   

deepDTnet DL tool Identifies target from heterogenous 

networks2 

   

ML-classifier ML based tool Utilizes genome mining for prediction 

of biological activity 

Predicts the antifungal and antibacterial 

activity of natural products based on 

BGS with 80% accuracy174 

SPiDER  ML based tool Target identification for drugs and 

computer-generated scaffolds. 

Identification of novel fenofibrate 

related compounds121 

   

SuperPred Prediction 

webserver 

Classification of drug and prediction of 

target by considering 2D, 3D and 

fragment similarity. 

Alternative to chemoproteomics175 

   

KronRLS ML algorithm Prediction of drug-target interaction176 

based on features and similarity 

DeepDTA DL algorithm Prediction of drug target based on 3D 

structure of protein  

Used to identify therapeutic efficacy of 

antiviral medicines against SARS-CoV-

2177 

PADME DL algorithm Analyzes drug-induced transcriptome 

data for prediction of drug target 

interaction178 

DeepAffinity DL algorithm Uses both CNN and RNN to predict the 

binding affinity of drug to target84 

DeepTox DL algorithm A deep learning tool that predicts 

toxicity175 
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Figure 1. AI as a tool for mining plant and microbial secondary metabolites 1125 

Figure 2. Virtual screening vs conventional computer-aided discovery of natural 1126 

products  1127 

Virtual screening (Selection of bioactive NPs by virtual screening includes three major 1128 

sequential steps: Library preparation -The bioactive metabolites are obtained from the 1129 

compound library and then checked for correction of structures, generation of conformers, 1130 

and file format conversion. Virtual screening -Structure-based and ligand-based 1131 

pharmacophore modeling, Similarity search-based 3D shape and fingerprints, docking, 1132 

molecular filters, and molecular simulation. Experimental validation of selected compounds 1133 

by in-vitro and in-vivo assays). 1134 

Figure 3. Applications of AI in Natural product drug discovery: 1135 

1- Genome mining (PRISM, BAGEL, antiSMASH, ARTS);  2-Selection and screening of 1136 

natural products (IDBac, SPeDE, MALDI-TOF); 3-Dereplication of natural products 1137 

(DEREPLICATOR, GNPS, SIRIUS-4); 4-Classification of metabolites; 5-Interpretation of 1138 

structure (DEEP picker, DP4-AI, NAPROC-13); 6-Prediction of physicochemical properties 1139 

(OpenChem, ChemSpider, PCLIENT, E-    BABEL); 7-Prediction of bioactivity (ML-1140 

classifier, Deep affinity, DeepTox, PADME, KronRLS) ; 8-Identification of Target 1141 

(BANDIT, SPIDER, SuperPred, DEcRyPT). 1142 
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 1165 
Figure 1. AI as a tool for mining plant and microbial secondary metabolites 1166 
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Figure 2. Virtual screening vs conventional computer-aided discovery of natural 1198 

products 1199 
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Figure 3. Applications of AI in Natural product drug discovery 1225 




